Taxation when markets are not competitive: Evidence from a loan tax

Felipe Brugués Rebecca De Simone†

First version: February 27, 2023
Latest version: January 12, 2024

Abstract

We study the interaction of market structure and tax-and-subsidy strategies utilizing pass-through estimates from the unexpected introduction of a loan tax in Ecuador, a quantitative model, and a comprehensive commercial-loan dataset. Our model generalizes bank competition theories, including Bertrand-Nash competition, credit rationing, and joint-maximization. While we find the loan tax is distortionary, neglecting the possibility of non-competitive lending inflates estimated tax deadweight loss by 80% because non-competitive banks internalize some of the burden. Conversely, subsidies are less effective in non-competitive settings. If competition were stronger, tax revenue would be 10% lower. Findings suggest policymakers consider market structure in tax-and-subsidy strategies.

JEL Classification Codes: Banks (G21); Government Regulation of Banks (G28); Taxation and Subsidies (H2); Market Structure, Firm Strategy, and Market Performance (L1)

†The authors are from the Business School of Instituto Tecnológico Autónomo de México and the London Business School, respectively. They can be reached at felipe.brugues@itam.mx and rdesmone@london.edu. Harshini Shanker provided excellent research assistance. The authors are grateful to John Gallemore (discussant), Thomas Gresik (discussant), Diego Jiménez Hernández (discussant), Paula Bustos, João Cocco, Cláudia Custódio, Francisco Gomez, Gautam Gowrisankaran, Nicola Pavanini, Tarun Ramadorai, Claudia Robles-Garcia, Bernard Salanié, Antoinette Schoar, Pietro Tebaldi, Constantine Yannelis and seminar and conference audience members for helpful comments. We are grateful for financial support from Small Research Grant 491 from the Structural Transformation and Economic Growth Research Programme; grant RG-K1198 from the Inter-American Development Bank research stream on “Competition in Latin America and the Caribbean;” and the LBS Research and Materials Development Fund. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the Inter-American Development Bank, its Board of Directors, or the countries they represent. Copyright © 2023. Inter-American Development Bank. Used by permission.
Policymakers often target taxes and subsidies on the banking sector because of its essential role in aggregating wealth and allocating it across the real economy.¹ These policies are frequently debated in the popular forum and among several academic literatures, yet the consideration that tax and subsidy effectiveness could depend on the competitive structure of the banking sector (Weyl and Fabinger (2013); Pless and van Benthem (2019)) is frequently ignored.² Yet banking is not well described by the competitive benchmark of the classical paradigm in public finance (Slemrod (1990); Auerbach (2002)).³ In this paper, we fill this gap by empirically investigating how bank competitive conduct mediates the welfare effects of financial tax policy.

We focus on the setting of an unanticipated introduction in 2014 of a loan tax in Ecuador to fund a public cancer hospital (Sociedad de Lucha Contra el Cáncer, or SOLCA). Ecuador designed the SOLCA tax as a one-time charge of 0.5% of the value of credit at the point of loan approval.⁴ Crucially, the tax was unanticipated and swiftly enacted—it was proposed in September and was in effect by October 2014. Thus, the SOLCA tax introduction serves as (1) a representative example of a capital tax employed worldwide,⁵ and (2) a quasi-exogenous shock to the marginal cost of lending, uncorrelated with any concurrent changes in credit demand.

We leverage comprehensive administrative data from 2010 to 2017 that allow us to measure loan-level contract terms for new commercial credit and detailed firm-level information for commercial borrowers, which use bank credit as a primary source of financing.⁶ We rely on the unexpected introduction of the tax to obtain pass-through estimates using an event study. On average, borrowers shoulder around 50% of the loan tax and banks absorb the remainder by reducing the loan interest rates. We do not observe any anticipatory movement in interest rates, while the incomplete tax pass-through is persistent through eight quarters after the tax was implemented. Moreover, we compare within active firm-bank pairs so that it is unlikely that the effects are driven by changes in the composition of borrower risk.

The literature has argued that persistent incomplete pass-through is prima facie evidence of imperfect competition (e.g., Scharfstein and Sunderam, 2016; Drechsler et al., 2017; Benetton and Fantino, 2021; Eisenschmidt et al., 2023). The intuition is that if lenders priced purely

¹See, for example, Colliard and Hoffmann (2017); Cai et al. (2021); and Dávila and Parlatore (2021).
²There is recent reduced-form evidence that tax pass-throughs vary by market concentration in lending markets (Scharfstein and Sunderam (2016); Drechsler et al. (2017); Benetton and Fantino (2021)). Yet the standard assumption in the structural lending literature remains that lenders do not consider their competitor’s profits when pricing loans (Egan et al. (2017); Crawford et al. (2018); Robles-Garcia (2021); Benetton et al. (2021); Cuesta and Sepúlveda (2021); Cox et al. (2023); Yannelis and Zhang (2023)).
³Empirical evidence of competition in banking and its effects includes Ciliberto and Williams (2014); Cornaggia et al. (2015); Hatfield and Wallen (2023); Brugués and De Simone (2023); and Jiang et al. (2023).
⁴The tax was 0.5% for credit with maturity greater than one year and 0.5%*(maturity in months/12) for credit with maturity below one year during our sample period. See Section 1 for details.
⁵The Centre for Economic Policy Research estimates that more than 40 countries used a financial transaction tax in 2020 (https://cepr.net/report/financial-transactions-taxes-around-the-world/, accessed August 8, 2023). And such taxes are frequently proposed, including in the Inclusive Prosperity Act proposed by Senator Bernie Sanders in 2019 and COM/2013/71 proposed by the European Commission in 2013, which is still on the table as of 2023.
⁶Data from the World Bank Enterprise Survey 2017 reveals 60% of Ecuadorian firms have a bank credit, comparable to the Latin American average (53% of firms). Other prominent sources of financing in Ecuador include internal financing (covering 54% of investments) and supplier trade credit (used by 64% of firms).
based on lending’s marginal cost, they could not profitably decrease interest rates in the long-term in response to the new tax. However, reduced-form evidence alone is not sufficient to fully characterize welfare, since the same observed pass-through is consistent with different market structures if the analysis does not hold other demand and supply parameters constant (Weyl and Fabinger, 2013). Our approach relaxes the need to make an a priori assumption on the competitive conduct in the market and instead allows us to estimate conduct from the data. Specifically, we introduce a free conduct parameter into a flexible discrete-continuous structural model of commercial lending that captures the equilibrium competitive behavior of banks in the same market. Crucially, our model allows the common competitive structures in the literature as special cases, including, Bertrand-Nash competition (the literature’s benchmark), credit rationing (Cournot), and joint maximization and can be estimated using traditional methodologies (Train, 1986).

While flexible, our approach introduces an additional difficulty. Namely, the competitive conduct parameter and supply-side parameters cannot be separately identified using price and quantity data alone (Bresnahan, 1982). It is for this reason that the literature commonly assumes a competitive conduct of zero, corresponding to Bertrand-Nash competition. Our key innovation is the insight that the pass-through estimates themselves serve as quasi-experimental variation in lending markups that are sufficient to identify the general competition parameter. Our model transparently maps the estimated pass-through rate and demand parameters into inference about the form of competition.

We find that lenders are not competing. The estimated conduct parameter is statistically indistinguishable from that representing a perfectly collusive model in which lenders form agreements (perhaps tacitly) about prices and act as a single profit-maximizing monopolist in the market. We can rule out that banks are Bertrand-Nash or Cournot (credit rationing) competing with at least 95% confidence. We test the robustness of the results by transparently validating the identification conditions relating pass-through to conduct. Furthermore, to reduce concerns that conduct might have been affected from the introduction of the tax, we show estimates are relatively unaffected if we rely only on periods before the tax is introduced.

Why might banks collude? The easy answer is that, as in other sectors, banks prefer higher markups. But specific to banking, policymakers often favor market concentration in lending to reduce fragility in the banking system.⁷ We also provide evidence supporting collusion in our setting. Markets with lower competition as measured by standard competition proxies also have less complete pass-through and less competitive conduct parameters. Moreover, banks that are members of a banking association that anecdotally helps lenders coordinate indeed have less competitive pass-through and conduct.

We then use our model to quantify how important competition in commercial lending is to

⁷This “competition-fragility” hypothesis proposes that competition reduces bank profit margins and charter values, encouraging banks to increase risk (Keeley, 1990; Hellmann et al., 2000; Beck et al., 2013; Corbae and D’Erasmo, 2019; Jiang et al., 2023), though this hypothesis is contested (Petersen and Rajan, 1995; Berger et al., 1998; Boyd and De Nicolo, 2005; Martinez-Miera and Repullo, 2010; Akins et al., 2016).
the welfare effects of the bank tax. We find that not accounting for lender collusion would vastly overstate the welfare costs of taxes (and, conversely, the welfare gains from subsidies). If we assume Bertrand-Nash price competition when setting interest rates, we estimate the SOLCA tax’s deadweight loss to be 92 cents per dollar. Instead, while still distorting, we estimate a significantly smaller loss of 41 cents per dollar when allowing the model to depart from differentiated Bertrand-Nash price competition, the most common conduct in the literature. Thus, the tax was less distortive than originally believed without accounting for lender equilibrium competition. We find that this is because the incidence of the tax depends critically on the competitive structure of the market. In particular, borrowers bear a much higher burden of the tax under Bertrand-Nash competition and the deadweight loss is greater per unit of revenue raised. In contrast, the incidence falls primarily on banks in the joint maximization environment, lowering the tax’s distortionary effect on borrowing. Hence, the policymaker’s evaluation of the efficiency and incidence implications of introducing a capital tax is greatly affected by the market structure assumption.\(^8\) As in Miravete et al. (2018), we find that revenue maximizing tax-rates are higher under less competitive conduct, showing that the Laffer curve shifts rightward under reduced competition. Moreover, we estimate that tax revenue would be approximately 10% lower if lenders Bertrand-Nash compete.

While our study focuses on the 2014 SOLCA tax in Ecuador, its implications extend beyond this specific context due to the global prevalence of uncompetitive banking sectors and the widespread use of capital taxes.\(^9\) Moreover, at the most basic economic level, the SOLCA tax is a quasi-exogenous shock to lending markups in our setting. Thus, our methodology readily applies to other marginal cost shocks (shocks to markups keeping demand constant), such as studying the effect of interest rate pass-through when lending markets are not competitive.\(^10\) Conversely, we find that a loan subsidy that reduced the marginal cost of lending would be expansionary, reducing deadweight loss. However, the benefits (incidence) would accrue mostly to lenders.

An important implication of our model estimates is that in our setting we find that, as long as

\(^8\)Let us say explicitly that policymakers would consider many factors, including the relative cost-benefit of collusion in lending markets itself. In related work (Brugués and De Simone, 2023), we use our model to quantify intensive and extensive margin impacts of pricing power from collusion above and beyond demand-size sources of market power; provide a decomposition of markups into a portion from lender conduct, borrower preferences, and borrower risk; and examine the impact of proposed competition reforms in the banking sector. This does not negate the fact that the impact of the tax itself depends on lender competition holding conduct constant.

\(^9\)We provide evidence that the Ecuadorian commercial loan market is representative in Section 1 and in Appendix Appendix H, where we report correlations between average equilibrium interest rates and market characteristics at the aggregated bank-province-year level. We also compare our estimates to those in the public finance and banking literatures throughout.

\(^10\)A substantial literature documents the pass-through of monetary policy to interest rates (Scharfstein and Sunderam, 2016; Di Maggio et al., 2017; Drechsler et al., 2017; Benetton and Fantino, 2021; Wang et al., 2022; Eisenschmidt et al., 2023; Li et al., 2023). Our results can extrapolate to this question to the extent interest rate changes act through similar cost-shifter mechanisms as a tax. The advantage of using the SOLCA tax as a setting to estimate the magnitude of the impact rather than interest rate changes is that the tax is a cleaner shock. For example, it is more credible that the tax did not impact welfare both directly and through large feedback effects, such as changing the investment opportunity set. This is less credible in the interest rate setting.
one relies on empirical pass-throughs to capture competition behavior among banks, estimates both for incidence and excess burden are consistent across the various conduct assumptions.\footnote{Exact welfare magnitudes cannot be pinned down without a model that incorporates flexible conduct.} This is because consumer surplus and government marginal revenue depend mostly on pass-through rates, while producer surplus depends on pass-through as well as demand elasticities. In our setting, the relevant cross-elasticities are much smaller than the own elasticity and thus the influence of conduct on final producer surplus is relatively small. This implies that, from a policy perspective, it may be feasible to obtain robust predictions about the welfare effect of proposed financial taxes without the need to model and test conduct beforehand in markets with similar demand features.\footnote{This is not obvious as, keeping pass-through constant, incidence and excess burden generally change with conduct (Weyl and Fabinger, 2013).} This insight enhances the practical usefulness of our findings outside of our specific setting.

Our study advances the literature in several ways. First, we offer one of the first empirical pieces of evidence of how market structure mediates the effects of taxes, and the first in the economically important commercial lending sector. Our study builds upon an extensive literature focusing on the welfare and distributional effects of the pass-through of taxes (and regulatory costs equivalent to taxes) in product markets (Nakamura and Zerom, 2010; Fabra and Reguant, 2014; Ganapati et al., 2020), as well as the theoretical literature linking such effects to competitive environments (Weyl and Fabinger, 2013). However, the distributional effects of taxes in lending markets and how this depends on the market structure of the banking industry are less studied. Reduced-form evidence from high-income countries supports that pass-throughs vary by market concentration (Scharfstein and Sunderam, 2016; Drechsler et al., 2017; Benetton and Fantino, 2021). While suggestive, these do not illuminate the source of bank pricing power. Our paper adopts a distinct public finance lens, investigating how bank concentration mediates the welfare effects of financial tax policy.

Specifically, we underscore the significance of competition, estimating its direct effects on lending markets by leveraging the SOLCA tax introduction in Ecuador. Our methodology, reminiscent of Atkin and Donaldson (2015) in international trade and Bergquist and Dinerstein (2020) in local agricultural markets, offers a novel approach underrepresented in the lending literature. There are a few related papers outside the lending context. Ganapati et al. (2020) study the welfare effects of energy input costs for US manufacturers accounting for imperfect competition. Like us, they find that the incidence of cost shocks on consumers is lower under collusion than when firms compete. Miravete et al. (2018) study the tradeoff between tax rates and revenue when markets are not competitive using the setting of retail sales of alcohol in Pennsylvania. As in our study, they find that the government’s revenue gain is significantly lower than expected under standard differentiated price competition. Moreover, we provide similar evidence that the Laffer curve for the optimal revenue-maximizing tax rate moves to the right in less competitive conduct. Our study also demonstrates how market competition affects
the incidence and effectiveness of the SOLCA tax as a case study applicable more generally to a wide range of capital taxes and fees.

More broadly, while our welfare analysis follows the public policy literature in focusing on the marginal excess burden of the SOLCA tax (Auerbach, 1985, 2002), our finding that the welfare effects of taxes and subsidies vary with the competitiveness of the industry applies more widely. The literature presents various frameworks to estimate the shadow price of raising revenue from different groups to help policymakers choose among a menu of feasible trade-offs. Our results suggest that regardless of the welfare framework employed, policymakers should incorporate market structure to correctly define the trade-off.

Second, we contribute a methodological innovation by using the pass-through of the SOLCA tax to estimate a free bank conduct parameter and quantify the degree to which banks collude and what market features facilitate collusion. This strategy allows us to empirically test the competition model of lending directly. A substantial portion of the credit literature—Crawford et al. (2018) and (Cox et al., 2023) in commercial lending but also in deposits (Egan et al., 2017), mortgages (Robles-Garcia (2021); (Benetton, 2021), auto lending (Yannelis and Zhang (2023)), and consumer lending (Cuesta and Sepúlveda, 2021)—focuses on Bertrand-Nash models and the role of lending market frictions in explaining observed prices. We provide a fresh perspective by generalizing bank conduct so that we can estimate how markups reflect pricing power from the demand-side factors emphasized in these papers and how much they reflect lender softened competition.

This also relates to a much wider industrial organization literature that models and estimates firm conduct, following the pioneering work of Bresnahan (1982). Notable recent examples (Nevo, 2001; Miller and Weinberg, 2017; Backus et al., 2021; Calder-Wang and Kim, 2023) follow his lead in using exclusion restrictions from plausibly exogenous shifters, or via direct measures, of markups to test alternative conduct models.

This literature focuses on product characteristics or demand demographics instruments that shift demand without affecting marginal costs (Berry and Haile (2014); Duarte et al. (2021); Backus et al. (2021)). However, in markets with adverse selection and other pair-specific frictions such instruments also correlate with marginal costs, violating the exclusion restriction. Instead, we use a tax as an exogenous shifter and propose the targeting of pass-throughs as a

13 E.g., using the related welfare concepts of the Marginal Value of Public Funds (Mayshar, 1990; Hendren and Sprung-Keyser, 2020)) and the Marginal Cost of Funds (Stiglitz and Dasgupta, 1971; Atkinson and Stern, 1974; Kleven and Kreiner, 2006).

14 Hatfield and Wallen (2023) consider the impact of bank collusion in the deposit market through multi-market contact but do not take a modeling approach that allows quantification of otherwise unobservable bank conduct. Ciliberto and Williams (2014) also considers the effect of collusion through multi-market contact in the airline industry but do not allow for a fully flexible conduct parameter. Our approach allows us to flexibly consider multiple traditional models of bank competition and estimate the conduct parameter without taking an ex-ante stand on the mode of conduct in the data.

15 E.g., the local share of children affects cereal demand but is unlikely to affect the marginal costs of production.

16 E.g., firm growth rates, assets, and the age of the CEO correlate with borrower-specific marginal cost changes.
moment to estimate lender conduct.\footnote{Rojas (2008) also use pass-through from a large increase in excise tax on beer to compare prices to those implied by various pricing models, though he does not estimate conduct directly.} Our methodology thus extends the classic industry-wide papers from Sumner (1981) and Sullivan (1985) and is in the spirit of Atkin and Donaldson (2015), who use observable pass-through to determine the division of surplus between consumers and intermediaries stemming from international trade, and of Bergquist and Dinerstein (2020), who use experimentally estimated pass-throughs in agricultural markets to test for collusion of intermediaries. To our knowledge, this approach is novel in the lending literature and offers a robust solution for markets with adverse selection in which demand shifters correlate with marginal costs.

Lastly, our paper relates to a fast-growing financial literature on pass-through of monetary policy (Scharfstein and Sunderam, 2016; Di Maggio et al., 2017; Drechsler et al., 2017; Benetton and Fantino, 2021; Wang et al., 2022; Eisenschmidt et al., 2023; Li et al., 2023). Our paper implies that bank competitive conduct is a key driver of the incidence and welfare of financial instruments. In the specific case of Ecuador, our paper implies expansionary monetary policy that serves as a subsidy to lending would have a more diluted effect than otherwise thought, and banks would appropriate a significant chunk of those subsidies.

The rest of the paper is organized as follows. Section 1 describes the SOLCA tax, the Ecuadorian credit market, and our data sources. Section 2 presents our baseline model of commercial lending, with Section 2.1 describing how we identify the conduct parameter using pass-through from the SOLCA tax. Section 3 presents the empirical pass-through estimates. Section 4 describes how we estimate the demand model and present estimates and model fit. Section 5 presents the estimation strategy and estimates for the supply model. Section 6 offers model validation exercises, and counterfactual simulations while Section 7 presents welfare analysis of the SOLCA tax and how it depends on lender competitive conduct. Section 8 concludes.

1 Description of SOLCA Tax and Dataset

1.1 Loan Tax

Like many developing countries, particularly in Latin America, Ecuador employs bank levies as a revenue source (Kirilenko and Summers, 2003). Starting in 1964, Ecuador utilized a bank levy to raise funds to fund cancer treatment (Sociedad de Lucha contra el Cáncer or SOLCA tax). This tax applied to all financial operations at rates between 0.25 to 1 percent of the value of the transaction or loan. In 2008, the Ecuadorian government eliminated all taxes on financial transactions, including the SOLCA tax, opting instead to fund cancer treatment and research through the regular budget.

Then, in September 2014, the Ecuadorian National Assembly ratified a new law called the “Código Orgánico Monetario y Financiero” that standardized banking, finance, and insurance
regulations. A last-minute amendment reintroduced the SOLCA tax to address funding gaps for cancer treatment. This reintroduction was unexpected by both borrowers and financial institutions in Ecuador. The government implemented the new SOLCA tax by the end of October 2014, a mere month after the law’s passage.

The tax, collected by banks at loan grant and remitted to the tax authority, is levied on borrowers for each new loan. It applies to commercial, credit card, auto, and mortgage loans. Throughout our sample period, 2010-2017, only loans from private banks were subject to the SOLCA tax; the law exempted loans from state-owned banks. However, since state-owned banks do not primarily compete in conventional commercial credit, the tax effectively applied to most commercial loans. The tax amount varies with loan maturity: loans with a one-year or longer term incur the full 0.5% tax, while shorter-term loans are taxed proportionally. In summary, the re-introduction of the SOLCA tax was unanticipated and implemented swiftly. It applies to the universe of conventional commercial loans. Next, we describe the data that allow us to pin down the impact of the tax on commercial loan terms.

1.2 Datasets

We construct a comprehensive and detailed dataset from administrative databases collected by Ecuador’s bank regulator, the Superintendencia de Bancos, and its business bureau, the Superintendencia de Compañías. The data are quarterly and span the period between January 2010 and December 2017.

The primary data are the universe of new and outstanding commercial bank loans from banks operating in Ecuador between 2010 and 2017. This encompasses loans from 27 private commercial banks and six state-owned banks. These state-owned banks predominantly offer microloans to small businesses and retail mortgages.

While the dataset is not a credit registry—it does not allow banks to view other banks’ loan information—it provides similar types of information. Variables include loan amount, type, interest rate, term-to-maturity, and internal bank risk assessments at the time of loan issuance. Additionally, it includes quarterly snapshots on outstanding loans, including repayment performance data and loan drawdown.

For our analyses, we focus only on regular commercial loans issued to corporations regulated by the Ecuadorian Business Bureau (“SA” firms, for “Sociedad Anónima”). This ex-

18 The law also regulated mobile money payments and strengthened anti-money laundering measures.
19 See, for example, contemporary coverage in the two major Ecuadorian newspapers: “Código revive impuesto de 0.5% para créditos para beneficiar a SOLCA,” by the editorial staff, published the 29th of July 2014, in El Universo; and “El Código Monetario pasó con reformas de última hora,” by Mónica Orozco, published the 25th of July 2014 in El Comercio.
20 The tax rate for loans with maturities less than one year is calculated as 0.5% × \(X/12\), where \(X\) is the loan’s maturity in months.
21 Business structures in Ecuador include stock corporations (SA) and limited liability companies (SL). The main differences between these two kinds of enterprises are that shares may be freely negotiated in stock corporations while quotas of limited liability companies may only be transferred with the unanimous consent of all the
cludes microloans and loans to sole proprietorships. State-owned banks are also excluded from our main reduced-form analyses. These filters match our firm data and allow us to specialize our model of commercial credit. For example, market entry and competition within the microlending sector differ considerably from commercial lending by private banks.

We use a unique firm identifier to merge the loan dataset with annual, firm-level data from the Superintendencia de Compañías, Ecuador’s business bureau. This dataset provides balance sheets, income statements, and wage information.

1.3 Descriptive Statistics

We now describe the Ecuadorian commercial loan market and our main variables. Table 1 displays bank-province-year level credit statistics. The average (median) bank issues $59M ($1.4M) in corporate loans annually. A few banks dominate the commercial loan market. The average bank lends to 84 corporations in a year, but there are also banks with very few commercial clients, as the median bank has 11 firm clients a year. In total, banks offer 518 (24) loans a year. These patterns in the competitive structure of Ecuador’s commercial loan sector are representative of corporate lending elsewhere, as it is common to observe a few dominant national banks lending alongside smaller banks specializing regionally or in particular loan segments.

[Place Table 1 here.]

To see this from another angle, Table 2 presents descriptive statistics on market access and lending by market concentration, as measured by the Herfindahl–Hirschman Index (HHI) based on commercial lending share over 2010 to 2017. Sensibly, highly concentrated markets feature fewer branches and fewer competing banks. Branches in highly concentrated markets are smaller, cater to fewer clients, offer fewer loans in total as well as per client, and offer slightly shorter maturities and charge higher interest rates.

[Place Table 2 here.]

Next, Table 3 provides summary statistics on the merged commercial loan dataset spanning the years 2010 to 2017. The top panel summarizes the data at the firm-year level. We have 457,623 firm-year observations, corresponding to 31,903 unique corporations. Of these, 97,796 firm-year observations relate to active firm-year borrowers, whereas 359,827 observations pertain to non-borrowing firm-years. The average borrowing firm is roughly twelve years post-incorporation and possesses, on average, $2 million in assets. As in common elsewhere,
the firm size distribution is highly skewed—the median firm holds $400,000 in total assets. Total sales demonstrate a similar skew, with average (median) sales of $2.6 million ($620,000). The average (median) borrowing firm is highly leveraged, displaying a total debt-to-assets ratio of 0.66 (0.71). On average, firms maintain 1.38 (1) banking relationships within a given borrowing year. Most clients repeatedly borrow, as indicated by the average client borrowing 9 (2) times in a year.

In contrast, non-borrowing firms are generally younger, with a mean age of around ten years since incorporation, and are smaller, with mean (median) assets of $460,000 ($50,000) and mean (median) sales of $430,000 ($30,000). These non-borrowing firms are also less leveraged, with a total debt-to-assets ratio of 0.54 (0.58).

The banks in our sample only write down the value of about two percent of the loans that they issue. Actual default is a rare occurrence in our sample, happening less than one percent of the time. In the total sample, which includes sole proprietorships and micro-loans, the default rate is three percent. We provide additional evidence that the Ecuadorian commercial loan market is representative in Appendix H, where we report correlations between average equilibrium interest rates and market characteristics at the aggregated bank-province-year level. As with the competitive structure of the commercial loan market, the general patterns we observe between market access and loan pricing align with those documented in the existing banking literature.

The main takeaways are that (1) Ecuador is highly representative of other bank-dependent economies, especially in that (2) safe, formal firms access most formal credit at high interest rates (3) in a market where long-term relationship lending is the norm and (4) where banks wield pricing power that affects both the allocation of credit and credit terms. We incorporate these insights into our model, presented next, and our empirical specifications.

2 Model of Commercial Lending with Flexible Market Conduct

We have outlined the state of the Ecuadorian commercial lending market at the time of the re-introduction of the SOLCA tax in 2014 and established that commercial credit in Ecuador is comparable to commercial credit in other economies. This serves as the institutional framework upon which we build our analyses. In this section, we introduce the theoretical framework—a
quantitative model of commercial lending. The model enables us to directly characterize bank competition and its impacts. For a complete exposition of the model’s main features, please refer to Appendix A.

Our model is most applicable to small-to-medium-sized, single establishment firms and to private, traditional deposit-funded banks. We assume that borrowers and lenders are risk neutral, borrowers have the freedom to choose from any bank in their local market, and the returns on borrowers’ investments can be parameterized.

First, firm i in period t decides whether to borrow from one of the banks k actively lending in market m. The (indirect) profit function for borrower i choosing bank k in market m at time t is defined as follows:

$$\Pi_{ikmt} = \Pi_{ikmt}(X_{it}, r_{ikmt}, X_{ikmt}, N_{kmt}, \psi_i, \xi_{kmt}; \beta) + \epsilon_{ikmt},$$

Here, Π_{ikmt} represents the indirect profit function of the optimized values of loan usage, L_{ikmt}. It is equivalent to an indirect utility function in the consumer framework. X_{it} denotes observable characteristics of the firm, such as assets or revenue. r_{ikmt} is the interest rate. X_{ikmt} represents time-varying characteristics of the bank-firm pair, such as the age of the relationship. N_{kmt} is time-varying branch availability offered by the bank in market m. ψ_i captures unobserved (by the bank and the econometrician) borrower characteristics, like shareholders’ net worth and management’s entrepreneurial ability. ξ_{kmt} captures unobserved bank characteristics that affect all firms borrowing from bank k. ϵ_{ikmt} is an idiosyncratic taste shock. Finally, β collects the demand parameters common to all borrowers in market m. If the firm chooses not to borrow, it gets the value of its outside option, $\Pi_{i0} = \epsilon_{i0mt}$, normalized to zero indirect profit. Firms select bank k that gives them their highest expected indirect profit, such that the demand probability is $s_{ikmt} = \text{Prob}(\Pi_{ikmt} \geq \Pi_{ik'mt}, \forall k' \in m)$.

Then, given the set K_{imt} of banks in local market m in the period t available for firm i, the total expected demand is pinned down by $Q_{ikmt}(r) = s_{ikmt}(r)L_{ikmt}(r)$. This relationship-level expected demand is given by the product of firm i’s demand probability from bank k, s_{ikmt} and its expected loan use L_{ikmt} given posted interest rates $r = \{r_{1mt}, \ldots, r_{Kmt}\}$. Continuous-loan demand is determined by Hotelling’s lemma, such that input demand is given by $L_{ikmt} = -\partial \Pi_{ikmt}/\partial r_{ikmt}$.

On the supply side, we allow for different forms of competition among banks by introducing the market conduct parameter $\nu_m = \frac{\partial r_{ikmt}}{\partial \psi_{ikmt}} (j \neq k)$. ν_m measures the degree of competition (joint profit maximization) in the market (Weyl and Fabinger, 2013; Kroft et al., 2023). Specifically, $\nu_m = 0$ corresponds to Bertrand-Nash, $\nu_m = 1$ to joint-maximization, and other values indicate intermediate degrees of competition, including those corresponding to Cournot competition, which we pin down in Section 5.2. Intuitively, the parameter captures the degree of correlation in price co-movements.

23 Most borrowers have only one lender at a given point in time (see Table 3).
24 Different from Benetton (2021), we allow the price to vary by borrower-bank pair.
Banks choose borrower-specific interest rates to maximize their period-\(t\) profits. It is important to emphasize that, although we model banks as competing on price, by including the conduct parameter we also allow for banks to compete in credit rationing (quantities/Cournot). Specifically, bank \(k\) offers interest rate \(r_{ikmt}\) to firm \(i\) to maximize bank profits \(B_{ikmt}\), subject to the market conduct and one-time tax \(\tau_{ikmt}\):

\[
\max_{r_{ikmt}} B_{ikmt} = (1 - d_{ikmt})r_{ikmt}Q_{ikmt}(r + \tau_{ikmt}) - mc_{ikmt}Q_{ikmt}(r + \tau_{ikmt})
\]

s.t. \(\nu_m = \frac{\partial r_{ikmt}}{\partial r_{ijmt}}\) for \(j \neq k\),

Here, \(d_{ikmt}\) represents banks’ expectations of the firm’s default probability at the time of loan issuance.\(^2\) Before the introduction of the tax \(\tau_{ikmt} = 0\) and after the introduction of the tax \(\tau_{ikmt} \in (0, 0.05]\), depending on the contracted maturity of the loan. The related first-order conditions for each \(r_{ikmt}\) are then given by:

\[
(1 - d_{ikmt})Q_{ikmt} + ((1 - d_{ikmt})r_{ikmt} - mc_{ikmt})(\frac{\partial Q_{ikmt}}{\partial r_{ikmt}} + \nu_m \sum_{j \neq k} \frac{\partial Q_{ikmt}}{\partial r_{ijmt}}) = 0.
\]

Rearranging Equation 3 we derive:

\[
r_{ikmt} = \frac{mc_{ikmt}}{1 - d_{ikmt}} - \frac{Q_{ikmt}}{\frac{\partial Q_{ikmt}}{\partial s_{ikmt}} + \nu_m \sum_{j \neq k} \frac{\partial Q_{ikmt}}{\partial s_{ijmt}}},
\]

which we express in terms of price elasticities:

\[
r_{ikmt} = \frac{mc_{ikmt}}{1 - d_{ikmt}} - \frac{\epsilon_{kk} r_{ikmt}}{\epsilon_{kk} r_{ikmt} + \nu m \sum_{j \neq k} \epsilon_{kj} r_{ijmt}}.
\]

Much like a regular pricing equation, the model includes a marginal cost term and a markup. The markup comprises two components. First, there is the usual own-price elasticity markup that is retained under pure Bertrand-Nash competition (\(\epsilon_{kk} = \frac{\partial Q_{ikmt}}{\partial r_{ikmt}}r_{ikmt}/Q_{ikmt}\)). The second term in the markup (\(\epsilon_{kj} = \frac{\partial Q_{ikmt}}{\partial r_{ikmt}}r_{ijmt}/Q_{ikmt}\)) captures the importance of the cross-price elasticities. This second term captures alternative conduct: when \(m > 0\) the bank takes into account the joint losses from competition when setting loan rates. The higher the value \(m\), the more closely bank behavior aligns with full joint-maximization (monopoly), and the higher the profit-maximizing price \(r_{ikmt}\). The model thus nests the Bertrand-Nash pricing behavior of Crawford et al. (2018), Benetton (2021), and others, but also allows for deviations due to collusive conduct among banks. Our model also adjusts prices upward to account for expected

\(^2\)Our model does not endogenize the default decision as in Crawford et al. (2018) because base default rates are low in our setting and previous evidence in developing countries shows moral hazard might have second-order effects (Castellanos et al., 2023).
risk from non-repayment, plausibly capturing adverse selection in risk.\\(^{26}\)

It is worth highlighting the generality of our marginal cost assumption. While we stipulate that marginal costs are constant for each loan, the model allows for considerable heterogeneity. First, we allow marginal cost to be borrower specific. For example, some borrowers may be easier to monitor so that the bank will have a lower marginal cost of lending to them. Second, we allow the marginal cost to be bank-dependent, capturing differences in efficiency across banks. Third, we allow for differences across markets, permitting geographical dispersion such as that related to the density of the bank’s local branches. Fourth, we account for pair-specific productivity differences by indexing marginal costs at the pair level. This would control for factors such as bank specialization in lending to specific sectors. Fifth, although marginal costs are constant for a given borrower, the pool of borrowers will affect the total cost function of the firm, allowing them to be decreasing, increasing, or constant, depending on the selection patterns of borrowing firms. Lastly, we allow all of this to vary over time.

2.1 Identification of the conduct parameter

Our model alone does not allow separate identification of the supply parameters. To understand why, suppose that the econometrician has identified the demand and default parameters, either through traditional estimation approaches or because the econometrician has direct measurements of these objects using an experimental design.\\(^{27}\) By inverting Equation 5, we obtain:

\[
mc_{ikmt} = r_{ikmt}(1 - d_{ikmt}) + \frac{1 - d_{ikmt}}{r_{ikmt}} \left(\frac{\epsilon_{k}}{r_{ikmt}} + \frac{1}{\sum_{j \neq k} \frac{\epsilon_{j}}{r_{ijmt}}} \right).
\]

This equation demonstrates why observing prices, quantities, demand, and default parameters alone is not sufficient to identify pair-specific marginal costs. The reason is that conduct, \(u_m\), is also unobserved. Without information on \(u_m\), we can only bound marginal costs using the fact that \(u_m \in [0, 1]\).

To overcome this difficulty, we follow insights from the public finance literature that the pass-through of taxes and marginal costs to final prices are tightly linked to competition conduct (Weyl and Fabinger, 2013). By incorporating reduced-form pass-through estimates derived from the SOLCA tax, we introduce an additional identifying equation that enables us to separate marginal costs from conduct parameters. The reason we can recover conduct with information on pass-through estimates is that, given estimates of demand elasticities (curvatures), the rela-

\\(^{26}\) Besides two main distinctions: (1) pair-specific pricing and (2) use of Hotelling’s lemma instead of Roy’s identity, the demand setting presented here closely follows Benetton (2021). An alternative model would adopt the setting of Crawford et al. (2018), which allows for pair-specific pricing. However, our model differs substantially from those in both these papers, as we no longer assume banks are engaged in Bertrand-Nash competition in prices, i.e., we don’t assume all bank pricing power comes from inelastic demand. Instead of assuming the specific mode of competition, we follow a more general approach that nests several types of competition: Bertrand-Nash, Cournot, collusion, etc.

\\(^{27}\) We discuss our strategy for identifying the demand and default parameters below.
tion between conduct and pass-through is monotonic. Therefore, for a given observation of pass-through, and holding demand elasticities constant, only one conduct value rationalizes a given pass-through.

To express the pass-through rate as a function of bank conduct ν_m, we express Equation 3 into terms of semi-elasticities and apply the implicit function theorem, yielding:

$$
\rho_{ikmt}(\nu_m) \equiv \frac{\partial r_{ikmt}}{\partial mc_{ikmt}} = \frac{(\bar{\varepsilon}_{kk} + \nu_m \sum_{j \neq k} \bar{\varepsilon}_{kj})/(1 - d_{ikmt})}{(\bar{\varepsilon}_{kk} + \nu_m \sum_{j \neq k} \bar{\varepsilon}_{kj}) + (r_{ikmt} - mc_{ikmt}/(1 - d_{ikmt}))} \left(\frac{\partial \bar{\varepsilon}_{kk}}{\partial r_{ikmt}} + \nu_m \sum_{j \neq k} \frac{\partial \bar{\varepsilon}_{kj}}{\partial r_{ikmt}} \right)
$$

As a result, Equations 6 and 7 together form a system of two equations in two unknowns (mc_{ikmt}, ν_m), thereby allowing the identification of supply parameters.

In practice, we observe pass-throughs at a more aggregate level, such as the level of the market in which banks compete, whether that be defined at the city, province, regional or national level. By taking the expected value of these pass-through rates for different markets, we introduce an additional moment for each market to uniquely identify the conduct parameter ν_m for that market. The empirical analogue of these market moments can then be used to estimate conduct empirically. Figure 1 provides an overview of how we connect our theoretical framework to the available data and the quasi-experimental variation supplied by the SOLCA tax.

[Place Figure 1 here.]

3 Estimating the SOLCA tax pass-through

In this section, we describe how we measure the pass-through of the SOLCA bank tax on contracted nominal interest rates. This is the empirical variation we use to identify our model described in Section 2 above. We first demonstrate that the SOLCA tax affected new commercial loan terms, that there was no contemporary effect on loans from public banks that were not subject to the SOLCA tax, and that loan terms were not changing before the introduction of the tax. Next, we describe how we directly estimate tax pass-through and interpret the pooled pass-through estimates. As a sanity check on our estimates, we perform reduced-form heterogeneity analysis describing how market-level pass-through varies with proxies for market competitiveness. Finally, we report the pass-through of the SOLCA tax at the regional level, which we will use later to calibrate market-level conduct.

3.1 Checking Pass-through Identification Assumptions

The first step of our analysis is to characterize how the surprise introduction of the SOLCA tax in October 2014 affects subsequent new commercial loan terms, including nominal interest rates, maturity, and loan size. We do so by using event studies that transparently show the
evolution of the outcome of interest over time, allowing us to validate that the SOLCA tax was unexpected by borrowers and banks.

First, consider the following model for loan l contracted by firm f from bank b at time t:

$$r_{lfbt} = \sum_{k=-8}^{3} \delta_k 1[t \in k] + \beta_a \ln(A_{lfbt}) + \beta_m \ln(M_{lfbt}) + \alpha_f + \alpha_b + \eta DP_{lfbt} + \varepsilon_{lfbt},$$

(8)

where r is the pre-tax interest rate, A is the amount borrowed, M is the maturity in years, α_f are firm fixed effects, α_b are bank fixed effects, DP is the predicted default probability, and ε are time-varying unobservables. Firm (bank) fixed effects control for time-invariant unobservable firm (bank) characteristics. In alternative specifications, we incorporate firm-by-bank fixed effects to account for stable, relationship-specific unobservable factors, such as the quality of the bank-borrower match. This specification also controls for compositional effects of borrower risk, as the effects are estimated within already active firm-bank pairs. Finally, periods k are quarters around 2014 quarter 4, the quarter of October 2014, when the SOLCA tax came into force.

We control for loan term-to-maturity, as maturity has a direct negative effect on contracted nominal interest rates (see Appendix Table H1). Moreover, as shown below, the policy negatively affected the contracted maturity. Its exclusion would lead to an upward bias in the estimated coefficients δ_k, i.e., a bias towards complete pass-through. In addition, we include bank and firm fixed effects to control for unobserved, time-invariant heterogeneity in the determinants of interest rates. We also control for the loan amount. To prevent partial treatment from biasing the coefficients, we drop all new loans granted in October 2014, when the tax came into effect. For identification, we must normalize one of the coefficients δ_k to zero. We normalize two quarters ahead of the introduction (-2 in event time) to zero. Standard errors are clustered at the bank-quarter level to account for potential correlation of errors within bank prices at a given quarter.

The coefficient of interest, δ_k, identifies the average percent change in nominal interest rates on new loans from introducing the tax. If δ_k is negative then prices (and markups) decreased in response to the introduction of the SOLCA tax. This would indicate incomplete pass-through of the tax to borrowers because banks bore some of the burden by lowering loan interest rates. If, instead, δ_k is positive, there is more-than-complete pass-through, as the firm bears the full cost of the tax and pays a higher interest rate. Lastly, if δ_k is zero, there is complete pass-through of the tax to borrowers—the borrowers pay the entire tax and the bank does not adjust the interest rate.

28 We predict default at the loan level by regressing the event of a loan becoming 90 days or more behind payment on lagged, firm-level default predictors. See Appendix C for more details on how we predict loan default and construct the regressor DP.

29 Recall that the law mandates that the firm pay the tax, which is collected and remitted to the Tax Authority by the bank at loan grant. However, which party bears the tax burden need not be the same as the statutory burden. In this case, to the extent the bank lowers interest rates in equilibrium, they are bearing some of the cost of the tax.
interest rate. If we assume a constant marginal cost, either incomplete or more-than-complete pass-through is evidence of imperfect competition in the commercial bank lending market.\footnote{With additional assumptions, in particular of constant demand curvature, incomplete pass-through implies that the demand curve is log-concave while over-complete pass-through can indicate that the demand curvature is log-convex.}

Figure 2 presents the evolution around the introduction of the tax of the coefficients from modeling Equation 8, i.e., from testing the effect of the tax on nominal interest rates of loans granted by private commercial lenders. This specification allows us to visually test for pretrends. The identification assumption is that interest rates would have evolved on average similarly in the absence of the tax as they were evolving before the tax was introduced. For this assumption to hold it is crucial that bank loan terms were not set in anticipation of the tax.

For eight quarters before the SOLCA tax was introduced, pre-tax average nominal interest rates remained relatively flat and we cannot statistically distinguish any of the pre-event coefficients from the normalized period (-2). Immediately after the introduction of the tax, nominal interest rates jump downward by around 0.2 percentage points, with a slight downward post-event trend. The magnitude of this jump suggests that, on average, the pass-through is $(0.5 - 0.2) / 0.5 = 0.6$, i.e., the lender and borrower approximately split the tax burden.\footnote{Note that this interpretation assumes a 0.5\% tax on all loans. Recall that loans with a term-to-maturity of less than one year have a proportionally reduced tax rate. We address this below.} Estimated effects are similar if we use pair (bank-firm) fixed effects instead of separate bank and firm fixed effects, as shown in the right panel of Figure 2.\footnote{Our granular dataset allows us to observe individual bank-firm relationships. Bank-by-firm fixed effects control for additional supply factors, such as firm-specific monitoring skills or pair-specific match quality.}

Second, we perform a placebo test where we run our baseline event study Equation 8 on a sample of loans lent by government banks, which were not subject to the SOLCA tax. For these loans, the path of interest rates is strikingly different. Figure 3 shows cyclical levels of nominal interest rates, none significantly different from the event period -2 at conventional levels before or after the introduction of the tax. Note that we do not use this sample as control group as government banks are competing with private banks for borrowers and therefore these loans are not pure controls since the coefficients might capture general equilibrium effects. Nevertheless, this placebo test strengthens our confidence that commercial loan prices were not set in anticipation of the SOLCA tax, supports the institutional evidence that the tax was a surprise, and suggests that other factors were not impacting the interest rates of loans not subject to the SOLCA tax just after it was introduced.
We present an additional robustness specification in Figure B3 of Appendix B. In Panels (a) and (b) of the figure, we extend the time horizon to eight quarters after the introduction of the tax and document that the effect on nominal prices is persistent. The longer-horizon figures clearly demonstrate persistent pass-through incompleteness. We continue to use a post-period of three quarters in the main analyses because as the time window increases, there will be increasingly more confounders that will affect prices, thereby plausibly contaminating the pass-through estimate.

The theory of tax incidence under imperfectly competitive markets links price pass-through to market conduct (Weyl and Fabinger, 2013; Pless and van Benthem, 2019). Therefore, we are primarily interested in precisely estimating how the tax affected interest rates. However, both maturity and amount are set in conjunction with interest rates and cannot be ignored. For example, Appendix Table H1 presents correlations between the nominal interest rate on new debt and other contract features and market characteristics. We find a robust negative relationship between both amount and maturity and interest rates.

Therefore, we now turn to testing for an effect of the introduction of the SOLCA tax on loan contract terms other than interest rates. Figure 4 reports event study analyses where the outcome is loan term-to-maturity (left panel) or amount borrowed (right panel). The left panel of Figure 4 shows that the maturity of new commercial debt decreased after the SOLCA tax was implemented. This finding is intuitive, given that the tax schedule features a kink at the one-year maturity. In the right-hand panel, we see that the amount borrowed also decreased in response to the tax, significantly by three quarters from its introduction. In contrast with the effect on prices, changes in amount and maturity are rather gradual, aiding in the interpretation that interest rates are indeed a primary channel in which banks compete. Appendix Table B2 looks over a longer post period. This reveals that, unlike the average interest rate that did not revert up to eight quarters after the SOLCA tax was implemented, both amount and especially maturity revert towards their pre-tax levels.

Since we find a negative effect of the SOLCA tax on loan maturity and amount, excluding these other loan contract features from the regressions would bias estimates upward, mechanically pushing the estimates toward full pass-through. We, therefore, include contemporaneous maturity and loan amount in all regressions. Specifically, in all future specifications, we control semi-parametrically for maturity and amount in our main analyses rather than log-linearly as this specification offers more conservative estimates due to its flexibility in capturing any non-linear relationships.

Note that there is a significant drop in the amount borrowed in the quarter before the SOLCA tax was released relative to the average amount borrowed two quarters before. In the quarter after the tax is introduced, the amount borrowed reverts to its long-term prior trend. It is not clear what caused this reduction and there is no equivalent difference in either interest rates or
maturity in this quarter. However, if anything, this decrease supports our assertion that the tax was unanticipated—if borrowers and lenders knew that a loan tax was going to be implemented they would have strong incentives to increase borrowing before the law was passed.

However, although the effect in amount lent is temporary, this reduction in credit could affect bank-product marginal costs if banks do not have constant returns to scale. We test that this is not driving the result by exploring aggregate commercial credit volume around the introduction of the tax in Appendix Figure B3. We find no significant difference in total commercial credit through the first three quarters after the introduction of the SOLCA tax relative to two period before.33 Thus, at least for the early periods of the tax, our estimates capture the effect of the tax on prices, rather than potential changes in the marginal costs of banks.

3.2 Estimating the Tax Pass-through Directly

The event study specification described by Equation 8 is useful because it allows us to test for any evidence of pre-trends in contract terms in anticipation of the introduction of the SOLCA tax and to examine the evolution of the response. However, because there is a kink in the tax percentage at a loan maturity of one year, we can only recover an imprecise average pass-through. We therefore directly measure the pass-through of the tax to the cost of borrowing. Specifically, we estimate how final, tax-inclusive prices change with respect to the amount of the tax for each loan. We estimate for loan \(l \) contracted by firm \(f \) from bank \(b \) at time \(t \):

\[
 rTax_{lfbt} = \rho tax_{lfbt} + \sum_{k=1}^{20} \beta_a^k 1[A \in j] + \sum_{k=1}^{20} \beta_m^k 1[M \in z] + \alpha_d DP_{lfbt} + \alpha_f + \alpha_b + \epsilon_{lfbt},
\]

where \(rTax \) is the tax-inclusive, annualized interest rate and \(tax \) is the tax amount in percent.34 Following the structure of the SOLCA tax, for loans with a maturity of one year or longer \(tax \) is 0.5% after the reform and zero beforehand. For loans with less than a one-year maturity, \(tax \) is 0.5\% \(\times M \), where \(M \) is the loan’s maturity in years. Then \(rTax \) is the nominal interest rate in percent plus \(tax \)—the tax-inclusive price of borrowing.35 Control variables include: flexible controls for the amount \(A \) and maturity \(M \) of the loan using 20 buckets; the loan maturity, \(M \), with its 20 corresponding buckets; firm fixed effects \(\alpha_f \); bank fixed effects \(\alpha_b \); the predicted default probability \(DP \); and time-varying unobservables captured by \(\epsilon \). As mentioned above, we control semi-parametrically for maturity and amount rather than log-linearly as it will offer more conservative estimates. The estimation window is from eight quarters before the

33This result also holds in a before/after pooled comparison.

34Papers that run this type of empirical specification to recover pass-throughs include Atkin and Donaldson (2015); Pless and van Benthem (2019); Stolper (2021); and Genakos and Pagliero (2022).

35Notice a slight abuse of notation: while interest rates compound annually, the tax is only collected once, at the beginning of the credit. Hence, we are not directly comparing identical measures. Yet, most credit in our sample have term-to-maturity less than one year, so in practice, this abuse of notation has little effect. Indeed, in results not shown here we obtain almost identical estimates by restricting to contracts with term-to-maturity equal or less than one year.
introduction of the tax through three quarters afterward.

Model (1) of Table 4 reports the estimated direct pass-through, \(\rho \), of the tax to tax-inclusive interest rates on commercial loans granted by private banks. Hypothesis testing is conducted against the complete pass-through null hypothesis (\(\rho = 1 \)). If \(\rho < 1 \) it indicates incomplete pass-through and \(\rho > 1 \) corresponds to more-than-complete pass-through. We find that there is, on average, incomplete pass-through of the tax in aggregate. In particular, the borrower pays approximately 35% of the SOLCA bank tax on the average loan while the bank shoulders the rest by reducing the interest rate. Model (2) adds the probability of loan default as a control. The estimated coefficient remains statistically indistinguishable from that of Model (1).

Models (3) and (4) differ from Models (1) and (2) in that the estimation includes bank-firm pair fixed effects instead of separate bank and firm fixed effects. Note that this specializes our analysis to established lending relationships with new loans both before and after the SOLCA tax was introduced. The pass-through remains incomplete, but the borrower now shoulders a higher proportion of the tax—slightly more than half rather than around a third of the tax burden. The point estimate is again statistically indistinguishable with and without including the probability of loan default as a control. Comparing the model specifications, a higher pass-through within relationships that are already established might indicate that these relationships have lower demand elasticity, all else equal, while firms that switch banks have more elastic demand (Weyl and Fabinger, 2013; Ganapati et al., 2020).

3.3 Heterogeneity by Market Competitiveness

We now provide evidence that pass-through is indicative of differences in market power and conduct across markets. We test if observed pass-through from the SOLCA tax is higher (lower) where we observe more (less) competitive conditions. The hypothesized positive relationship between tax pass-through and competitive market structure is based on the insight from Weyl and Fabinger (2013) and others that pass-through is higher under Bertrand-Nash competition than under joint maximization if demand is log-concave.\(^{36}\)

To explore heterogeneity in the estimated treatment effect by competition proxies, we consider the following model:

\[
\begin{align*}
rtax_{lfbt} &= \rho tax_{lfbt} + \delta_h tax_{lfbt} \times X_{lfbt} + \sum_{k=1}^{20} \beta_k^{A} 1\{A \in j\} + \sum_{k=1}^{20} \beta_k^{M} 1\{M \in z\} + \\
&\quad \alpha_d DP_{lfbt} + \alpha_f b + \epsilon_{lfbt},
\end{align*}
\]

where \(X_{lfbt} \) is some market or firm characteristic, such as number of lenders by firm, or number of lenders in the market, etc. Coefficient \(\delta_h \) captures the heterogeneity in the treatment effect.

\(^{36}\)When demand is log-concave, pass-throughs are incomplete, like in our setting.
We use the same time windows as in the event-studies, namely, eight quarters before and three quarters after the policy.

We define the following variables as pre-treatment characteristics. The variable \# Lenders is the continuous count of the firm’s unique bank relationships; \# Av. City Active Lenders counts the average number of banks that have at least one active lending relationship in the firm’s city; and \# Potential Lenders captures the maximum number of banks that were actively lending at some point in the firm’s province. Variables HHI City and HHI – Province measure the average yearly Herfindahl-Hirschman index (HHI) in the firm’s city and province, respectively. Multimarket Contact measures the average number of other markets (provinces) in which banks in the market interact.\(^{37}\) Lastly, Market Share Nonmembers is the market share (defined on loan share) of banks in the given market that are not members of the Asociación de Bancos del Ecuador (ASOBANCA).

Table 5 presents the results. In all models, interacted variables are standardized such that the main effect is the pass-through for the average borrower. In Models (1), (2), and (3), we study pass-through heterogeneity in terms of the availability of lenders in the market. For all three definitions, a higher number of lenders is interpreted as higher competition. In all models, we find that markets with more lenders have pass-throughs that approach Bertrand-Nash, i.e., where the pass-through is closer to the competitive benchmark of full pass-through ($\rho = 1$).

Next, if the market is more concentrated, as indicated by a higher province (Model (4)) or city (Model (5)) HHI value, then estimated pass-throughs are lower, i.e., further away from the Bertrand-Nash benchmark of complete pass-through. Moreover, in Model (6) we demonstrate that areas with higher multi-market contact, or a higher number of other markets where the same set of banks offer commercial loans, have pass-throughs in line with less competitive conduct.

Finally, it is beyond the scope of this paper to fully demonstrate the exact mechanisms of how banks collude when pricing loans. However, in Model (7), we present suggestive evidence that, along with the multi-market contact result in Model (6), hints that frequent contact between banks may be part of the answer. The Asociación de Bancos del Ecuador (ASOBANCA) is a prominent bank lobbying group in Ecuador that organizes regular meetings and events between banks and whose website lists a primary purpose as promoting cooperation and communication between members. It is therefore a plausible mechanism for explicit or implicit collusion.\(^{38}\) In Model (7), we show that the SOLCA tax pass-through for ASOBANCA members is more competitive the higher the market share of non-members in the market. This is consistent with

\(^{37}\)This is in the spirit of Cliberto and Williams (2014) and Hatfield and Wallen (2023), which show that multi-market contact may facilitate tacit collusion and reduce competition.

\(^{38}\)ASOBANCA was investigated and charged in 2016 by the anti-trust regulator for coordination during the introduction of a new electronic payment system approved in the 2014 financial law. The charge was finally dismissed by the Constitutional Court in 2022. See Link to decision [accessed 30 August 2023]. Similarly, in 2022, the Bank Regulator expressed concerns over policy recommendations ASOBANCA made to the Legislature, claiming that they would have anti-competitive effects. See Comment by Regulator [accessed 30 August 2023].
the general finding in game theory that collusion becomes more difficult to sustain as the number and importance of competitors in a market increases (Horstmann et al., 2018).

Overall, these results are consistent with the hypothesis that banks collude implicitly and/or explicitly and that pass-through can capture heterogeneity in competition across markets. Indeed, all measures of competition show consistent results. Moreover, this exercise allows our setting to be compared to the results of the large number of papers that test the reduced-form relationship between bank competition proxies and interest rates. We find that our results are entirely consistent with existing evidence (Scharfstein and Sunderam, 2016; Di Maggio et al., 2017; Drechsler et al., 2017; Benetton and Fantino, 2021; Wang et al., 2022; Eisenschmidt et al., 2023; Li et al., 2023), further supporting the representativeness of the Ecuadorian commercial loan market.

However, this is suggestive rather than conclusive evidence that markets are not competitive. It may be that conduct is very close to Bertrand-Nash, yet markets differ widely in their demand determinants. For example, more concentrated markets may be smaller or in distant markets in which firms’ investment needs are scant, either of which would affect the shape and curvature of the demand for capital. While the bank-firm pair fixed effects and the controls for contract terms may capture some of this cross-market heterogeneity in demand, it might be insufficient if demand curves are non-linear. This is why a quantitative model is needed to estimate conduct and test whether it departs from a Bertrand-Nash (no collusion) benchmark in the data.

3.4 Pass-throughs by Region

While in practice, one could estimate pass-throughs at the lowest market level, e.g., province or city, some markets are small (with down to 200 observations), yielding noisy estimates. For that reason, we aggregate small provinces into regions and leave large provinces on their own. In particular, we estimate pass-through for the provinces Azuay, Guayas, and Pichincha, which are the largest, and aggregate across provinces for the regions Costa and Sierra/Oriente. Table 6 presents the direct tax pass-throughs by region. Although noisy for the smaller regions, we consistently find point estimates that indicate incomplete pass-through. We will use these point estimates to estimate conduct at the regional level.

[Place Table 6 here.]

4 Estimating the Model: Demand

In this section, we describe our estimation strategy for the demand parameters in the model described in Section 2. We then present and interpret our estimates of the demand model parameters at the regional level. Finally, we assess model fit.
4.1 Estimation Strategy

We follow Train (1986) and Benetton (2021) in writing the (indirect) profit function Π_{ik} using the parametric form:

$$\Pi_{ikmt} = \exp(\mu) \exp(\xi_{kmt} + \psi_i - \alpha_m r_{ikmt} - \alpha_m \tau(M_{ikmt}) + \beta_{m1} X_{it} + \beta_{m2} X_{ikmt}) + \gamma N_{ikmt},$$

(11)

where N_{ikmt} is the branch network in the local market and $\tau(M_{ikmt})$ captures the tax rate determined by contract maturity M_{ikmt}.

A key empirical challenge is that we observe the terms of granted loans while our demand model requires a menu of prices from all available banks to all potential borrowers in each market. To address this long-standing problem in the literature, we predict the prices of unobserved, counterfactual loans following the strategy of Adams et al. (2009), Crawford et al. (2018), and Ioannidou et al. (2022). Details are reported in Appendix D. Plugging in predicted prices from estimating Appendix Equation D2, we obtain the following indirect profit function:

$$\Pi_{ikmt} = \exp(\mu) \exp(\tilde{\xi}_{kmt} + \tilde{\beta}_{m1} X_{it} + \tilde{\beta}_{m2} X_{ikmt} - \alpha_m \tilde{\gamma}_2 \ln(L_{ikmt}) - \alpha_m \tilde{\tau}_i + \psi_i - \alpha_m \psi_{ikmt})$$

$$+ \gamma N_{ikmt} + \epsilon_{ikmt},$$

(12)

In the last equality, we consider a log-linear approximation of the function $\tau(M_{ikmt})$. We assume the idiosyncratic taste shocks ϵ_{ikmt} are i.i.d. Type-I Extreme Value and that the borrower’s unobservable characteristic heterogeneity, $\tilde{\psi}_{ikmt} = \psi_i - \alpha_m \tilde{\tau}_{ikmt}$, follows a normal distribution with mean zero and variance $\sigma^2_{b_i}$. Notice that, in principle, we could estimate the demand price parameter α_m from any of the variables $\tilde{\gamma}_2 L_{ikmt}$, and $\tilde{\omega}_j$. Yet, due to the noise created by the estimated parameters—following a traditional measurement error on the independent variable argument—the coefficient on α_m would be biased. For that reason, we follow the conventional route and estimate α_m from $\tilde{\xi}_{kmt}$ through a second-stage instrumental variable approach that relies on exogenous variation in average prices at the bank-market-year level that addresses concerns of measurement error and endogeneity.

Before we describe our instrumental variable strategy to identify α_m, we describe our maximum likelihood demand estimation procedure. First, we derive the maximum likelihood func-

39 Noting that they use indirect utility rather than profit.
40 Given the context, the function is equal to $\tau(M_{ikmt}) = 0.005 \min[1, M_{ikmt}]$.
tion. The conditional probability that the firm i chooses bank j is given by:

$$s_{ikm} (\psi_i) = \frac{\exp(\Pi_{ikm})}{\sum_j \exp(\Pi_{ijm})},$$

(14)

while the unconditional probability is given by

$$S_{ikm} = \int s_{ikm} (\psi_i))dF(\psi_i).$$

(15)

Given actual bank choices, we can use Hotelling's lemma to obtain the loan demand function L_{ikm}:

$$\ln(L_{ikm}) = \ln(\exp(\mu)\alpha_m) + \tilde{\xi}_{kmt} - \alpha_m \bar{r}_{ikm} + \beta_{m1} X_{it} + \beta_{m2} X_{ikmt} + \psi_i$$

(16)

Adding and subtracting $\alpha_m \bar{r}_{kmt}$, we get

$$\ln(L_{ikm}) = \ln(\exp(\mu)\alpha_m) + \tilde{\xi}_{kmt} - \alpha_m (r_{ikm} - \bar{r}_{kmt}) + \beta_{m1} X_{it} + \beta_{m2} X_{ikmt} + \psi_i.$$

(17)

From Equation 17 and the normality assumption for ψ_i, the probability of the conditional loan demand is:

$$f(\ln(L_{ikm})|k, k \neq 0) = \frac{1}{\sqrt{2\pi\sigma^2}} \times \exp \left[- \frac{\left(\ln(L_{ikm}) - \ln(\exp(\mu)\alpha_m) - \tilde{\xi}_{kmt} + \alpha_m (r_{ikm} - \bar{r}_{kmt}) - \beta_{m1} X_{it} - \beta_{m2} X_{ikmt} \right)^2}{2\sigma^2} \right].$$

(18)

Note that as branch network enters linearly in the indirect utility, it does not appear in input demand. Hence, this assumption implies an exclusion restriction: branch density affects likelihood of borrowing but not intensity.42

The joint log likelihood that firm i borrows a loan size L_{ik} from bank k is given by:

$$\ln(L) = \sum_{t=0}^{T} \sum_{m=0}^{M} \sum_{j=0}^{J_m} \sum_{k=0}^{K_m} l_{ikm} \left[\ln(S_{ikm}) + \ln(f(\ln(L_{ikm})|k, k \neq 0)) \right],$$

(19)

where l_{ik} is an indicator equal to 1 if borrower i chooses the loan offered by bank k and 0 otherwise. This likelihood function deals with the simultaneity issues created by the discrete-continuous choice, where the firm picks a bank as well as the size of the loan.

We implement this maximum likelihood demand estimation procedure in three steps. First, we obtain the values for the bank-market constants $\tilde{\xi}_{kmt}$ and the coefficients $\tilde{\beta}$ and β from the indirect profit function. The first iteration, $r = 1$, is a guess from a Logit model. In the sub-

41Here, we took the derivative of Equation 11 with respect to the interest rate.

42This assumption is the same as Benetton (2021) and Benetton et al. (2021). Like them, the assumption is supported in the data.
sequent iterations, we obtain the coefficients through gradient search. Second, we implement the instrumental variable approach described below to calculate α_m from the estimate of $\tilde{\xi}_{kmt}$. Third, we repeat this procedure for 1,000 bootstrap samples for each region to obtain standard errors for all coefficients.\footnote{An alternative approach is to use the control function from Train (2009). The first step of this method is to regress predicted and observed prices on the variables that enter the discrete and continuous demand equations. We would then include the residuals as controls in the joint maximum likelihood. In practice, the number of steps will be similar to the algorithm described above. The only benefit is that this algorithm performs the instrumental variable estimation at the same time as the gradient search process.}

We now describe how we estimate α_m while controlling for the endogeneity of demand and prices, and for potential measurement error. We implement an instrumental variable approach for the equation:

$$\tilde{\xi}_{kmt} = -\alpha_m \tilde{r}_{kmt} + \beta_b X_{kmt} + \epsilon_{kmt}. \quad (20)$$

Specifically, we instrument predicted bank-market time-varying prices \tilde{r}_{kmt} with the following variables: the average commercial price for bank k in other markets n, the average price for consumer loans in other markets, the average price for entrepreneur loans in other markets, and the aggregate default rate in non-commercial loan products, such as micro-lending, mortgages, and consumption. We find evidence supporting the relevance identification assumption: in the aggregate, the instruments relate well with the bank-market interest rates, with a model R-squared of 0.43. Moreover, as we report in Table F2, market-specific F-statistics are high.

The identification assumptions of our instrumental variable strategy are that none of the instruments are weak (relevance) and that all impact demand only through their effect on price (exclusion). In Appendix F we report the demand estimates pooled across regions and we reproduce the region-level instrumented price parameters estimates alongside first-stage Cragg-Donald Wald F-statistics for the first stage against the null hypothesis of instrument irrelevance. In aggregate, the instruments relate well with the bank-market interest rates, with a model R-squared of 0.43. Moreover, market-specific F-statistics, reported in Table F2, are high. This is strong evidence that our instruments are relevant.

The exogeneity of the instruments cannot be directly tested. Rather, we argue that the average commercial price for the loan-granting bank in other markets, the average price for consumer loans in other markets, the average price for entrepreneur loans in other markets, and the aggregate default rate in non-commercial loan products are set in response to common bank-level factors but do not affect a specific firm’s demand for a commercial loan in the market except through their effect on the interest rate. Encouragingly, when we performed Sargen-Hansen over-identification tests for our instrumental variable strategy, we failed to reject the null hypothesis that the error term is uncorrelated with the instruments.
4.2 Estimated Demand Parameters

Table 7 collects the aggregate demand parameter estimates, reported as the mean and standard deviation of the point estimates aggregated across regions. Standard deviations are bootstrapped by estimating each region-level parameter on 1,000 bootstrap samples, averaging them, and then taking the standard deviation across bootstrap samples.

Generally speaking, the signs of the estimates are as expected. First, the price parameter captures the sensitivity of demand to interest rates. We estimate it through the instrumental variable approach discussed above. As expected, higher interest rates have a negative effect on the demand for loans for a given bank. To understand the sensitivity of demand to prices, we calculate own- and cross-demand elasticities and report them in Section 4.3

The remaining demand parameters presented in Table 7 are sensible. The parameter sigma captures unobserved heterogeneity, while the scaling factor captures vertical shifts in the indirect utility to match the ratio of borrowers to non-borrowers. Next, the parameter for bank branches shows more demand for loans from banks with a greater physical presence in the market. The other parameters show that: (1) older firms are more likely to borrow; (2) borrowers are more likely to choose to borrow from banks the longer their lending relationship; (3) larger firms, measured by assets or revenues, are more likely to borrow; (4) firms with greater expenses or wage bills are more likely to borrow indicating investment and such inputs are complements; and (5), firms with higher leverage are less likely to borrow. Reported estimates at the regional level are available in Internet Appendix Table F1. These more granular estimates demonstrate the same patterns, while estimates and their direction continue to be sensible.

4.3 Estimating Demand Elasticities

The discrete-continuous model loan demand (intensive margin) elasticity and product share (extensive margin) demand elasticity are given, respectively, by:

\[
\epsilon_{ikmt}^L = \frac{\partial L_{ikmt}}{\partial r_{ikmt}} \frac{r_{ikmt}}{L_{ikmt}} = \frac{\partial \ln(L_{ikmt})}{\partial r_{ikmt}} r_{ikmt} = -\alpha_m r_{ikmt}
\]

and

\[
\epsilon_{ikmt}^s = \frac{\partial s_{ikmt}}{\partial r_{ikmt}} \frac{r_{ikmt}}{s_{ikmt}} \\
= -\alpha_m \exp(\mu) \exp(\xi_{ikmt} + \psi_i - \alpha_m r_{ikmt} + \beta_{m1} X_{it} + \beta_{m2} X_{ikmt})(1 - s_{ikmt}) s_{ikmt} \times \frac{r_{ikmt}}{s_{ikmt}} \\
= -\alpha_m \exp(\mu) \exp(\xi_{ikmt} + \psi_i - \alpha_m r_{ikmt} + \beta_{m1} X_{it} + \beta_{m2} X_{ikmt})(1 - s_{ikmt}) r_{ikmt}
\]
The elasticity for total demand is given by:

$$
\epsilon^Q_{ikmt} = \frac{\partial Q_{ikmt}}{\partial r_{ikmt}} = \frac{\partial s_{ikmt} L_{ikmt}}{\partial r_{ikmt}} \frac{r_{ikmt}}{s_{ikmt} L_{ikmt}} = \frac{\partial s_{ikmt} r_{ikmt}}{\partial r_{ikmt} s_{ikmt}} + \frac{\partial L_{ikmt} r_{ikmt}}{\partial L_{ikmt} s_{ikmt}} = \epsilon^s_{ikmt} + \epsilon^L_{ikmt} \tag{23}
$$

Regarding cross-price elasticities with respect to prices of competitor j, we obtain the following expression:

$$
\epsilon^{L,j}_{ikmt} = 0 \tag{24}
$$

and

$$
\epsilon^{s,j}_{ikmt} = \frac{\partial s_{ikmt}}{\partial r_{jkmt} s_{ikmt}} = \alpha_m \exp(\mu) \exp(\xi_{jmt} + \psi_i - \alpha m r_{ijmt} + \beta m_1 X_{it} + \beta m_2 X_{ijmt}) s_{ijmt} s_{ikmt} \times \frac{r_{ijmt}}{s_{ikmt}}
= \alpha_m \exp(\mu) \exp(\xi_{jmt} + \psi_i - \alpha m r_{ijmt} + \beta m_1 X_{it} + \beta m_2 X_{ijmt}) s_{ijmt} r_{jkmt} \tag{25}
$$

We report estimated own- and cross-demand elasticities in Table 8. Continuous is the intensive margin elasticity and Discrete is the discrete-choice elasticity, both with respect to interest rates. We find that a one percent increase in price leads to a mean (median) 4.63% (4.5%) decrease in loan use (continuous) and a 6.01% (0.55%) decrease in market share.44 Next, Total is the sum of continuous and discrete. Note the large demand heterogeneity across borrowers. Some borrowers are slightly elastic, with elasticities up to -2.81, whereas others are highly elastic, with estimates down to -44.68. Critically, our model is flexible enough to capture this borrower heterogeneity. This is vital since this demand heterogeneity may help explain differences in pass-throughs (Miravete et al., 2023). Finally, Cross elasticity is the discrete bank substitution elasticity with respect to interest rates. We find that a one percent increase in interest rates increases competitors’ market shares by 0.17% (0.01%).45

[Place Table 8 here.]

4.4 Model Fit

In Table 9, we present descriptive statistics on the fit of the model. We focus on market shares (discrete choice), loan use (continuous choice), prices, and default rates.46 The table shows that the model fits the mean data well, with a perfect fit for market shares, loan use, and default rates. Our model under-predicts prices by a small margin. Naturally, across all measures, our model predicts less variation than in the data.

44Compared to the structural lending literature, these estimates are slightly more elastic than those from Crawford et al. (2018) and Ioannidou et al. (2022) but are close in magnitude to those from Benetton et al. (2021).

45The median structural elasticities match reduced-form estimates for elasticities that we calculate using an instrumental variable approach in regression form, as presented in Appendix Figure F1.

46In Internet Appendix Section Appendix C, we discuss our empirical strategy to estimate default rates.
5 Estimating the Model: Supply

Having pinned down demand, we estimate the supply-side parameters, comprising the marginal costs \(mc_{ik} \) and equilibrium market competitive conducts \(\nu_m \), using the optimal pricing formulae. Specifically, we use the inverted Equation 6 and the pass-through Equation 7, which represent an exactly identified system of equations. We use the tax pass-through as the targeting moment.

In the rest of this section, we describe how we calibrate the conduct parameter capturing the extent of lender collusion. Then we test the calibrated conduct parameter against benchmarks corresponding to Bertrand-Nash competition, Cournot competition, and joint maximization/collusion.

5.1 Calibrating Conduct for each Market

We calibrate the conduct parameter to our data in each market. To keep the exercise computationally feasible, we implement the following simulated method of moments procedure for each region separately. First, we randomly pick 2,500 firms from the region.\(^47\) Second, we run a minimum distance calibration of the conduct parameter \(\hat{\theta} \) that matches the empirical pass-through we estimated in our data with the pass-through simulated by the model. We use a grid search with a grid size of 0.01. Note that this procedure returns conservative estimates because we are choosing the lowest feasible conduct in case of ties in fit. We are thus intentionally biasing our analyses towards conduct consistent with Bertrand-Nash competition.

To obtain pass-through estimates for each grid value, we use the estimated demand parameters with their corresponding model-consistent marginal costs to simulate pass-throughs of the introduction of the 0.5% tax rate. We then compare these simulated pass-throughs with the pass-through distribution from the actual data and show that, even after controlling for demand heterogeneity, pass-throughs can serve as an identification moment by providing a strong test.

To obtain model-consistent pass-throughs, we start with our estimates of bank-borrower-specific marginal costs of lending under each mode of conduct. Then, following the isomorphism between tax and marginal cost pass-throughs documented by the public finance literature (Gruber, 2005; Weyl and Fabinger, 2013), we model the introduction of the tax as a 0.5 percentage point linear increase in the marginal costs for each pair.\(^48\) Next, for each borrower, we use their estimated demand functions to solve for the Nash equilibrium of prices implied by the

\(^{47}\)We use at most 2,500 firms per market due to computation constrains: for each firm, we estimate Nash-equilibrium prices over a grid of 100 conduct parameters.

\(^{48}\)The literature has shown that economic incidence does not depend on the statutory incidence. It is possible to show in our setting that incidence is equal regardless of whether the tax is levied on borrowers or as a cost shock to banks.
system of equations of first-order conditions (Equation 3) for all banks in their choice set. Finally, we measure the simulated pass-throughs by comparing model equilibrium and observed prices before and after the introduction of the tax in the model.

Table 10 reports the results. Column (1) presents the best-fit conduct estimate. Column (2) is the bootstrapped standard error, calculated with 1,000 bootstrap samples at each grid point. We observe that the calibrated model returns a precisely non-zero conduct parameter for each region. We also see that estimated conduct varies significantly across regions, ranging from a low of 0.33 in Guayas up to a high of 0.91 in Costa.

5.2 Testing Competitive Conduct Against Competition Modes

In this sub-section, we test our estimated competitive conduct parameters versus well-defined conduct values corresponding to the leading models of competition in the banking market. Pure Bertrand-Nash competition and full joint-maximization correspond to conduct parameters—an \(\nu_m \) of zero and one, respectively—that do not vary across markets. In contrast, the conduct parameter for Cournot (quantity competition/credit rationing) depends on market-level elasticities as well as the number of competitors. We obtain the market-level estimate \(\nu_m \) for Cournot in two steps. First, we compute market-level estimates of the markup for Bertrand-Nash and Cournot following Magnolfi et al. (2022), who show that both markups can be written as a function of market shares and the Jacobians of the demand system. Then, we find the parameter \(\nu_m \) which maps the Bertrand-Nash markup to the Cournot markup given estimates of the market-level cross-price semi-elasticities \(\tilde{\epsilon}_{kj} \). We calculate that the conduct parameter corresponding to Cournot competition for Azuay is 0.2042, for Costa it is 0.4357, in Guayas we calculate 0.0609, in Pichincha 0.1993, and in the Sierra and Oriente region it is 0.2858. These Cournot values lie above the Bertrand-Nash conduct value of zero and below the full joint-maximization value of one and are in line with the number of borrowers in each market.

Next, we test our estimated market-level conduct against these well-defined benchmark values. Figure 5 reports for each region the lowest feasible conduct parameter estimates (y-axis) by degree of match (x-axis). The black dot at zero in the x-axis corresponds to our best estimate of the conduct parameter—the conduct that minimizes the squared distance between simulated and observed pass-through in the model. The black dot corresponding to 50 on the x-axis indicates the 50th best match. We report the top 50 conduct estimates for each region in order of the degree of match to the data, which allows us to demonstrate on how robust our calibrations are to our modeling choices and how stable our estimates are.

The grey area in each panel of Figure 5 represents confidence intervals based on the bootstrapped standard errors. The orange dotted line at one on the y-axis corresponds to complete joint maximization, the blue dashed line at zero to pure Bertrand-Nash competition, and the green dot-dash line to the conduct corresponding to Cournot/quantity competition in each re-
region. So, for example, in the region Azuay, reported in the top left panel, our best estimate of conduct is 0.77, but conduct could be as low as 0.49 or as high as 1.05. We therefore reject that banks Bertrand-Nash or Cournot compete in Azuay but fail to reject that they joint maximize when setting commercial loan prices.

In all regions, we observe stability in the first ten-to-twenty best-fitting models. We can reject pure Bertrand-Nash and Cournot competition with a 95% confidence level in the ten best-fitting model estimates for all regions. In Guayas and Pichincha, we can reject joint maximization in the best-fitting models. We fail to reject full joint maximization in three of the five regions. Overall, banks are not Bertrand-Nash competitive, and results are most consistent with some degree of joint maximization.

6 Assessing the Validity of Estimated Competitive Conduct

In this section, we further assess how robust our conduct estimates are to our modeling choices. First, we check the identification assumption that pass-through has variation that allows us to pinpoint conduct. Second, we present intuition figures highlighting how comparing nationwide actual and simulated pass-through leads to consistent conclusions about the mode of competitive conduct in the banking market. Third, we show that aggregate and regional level estimates are consistent with each other. Finally, we demonstrate the importance of freely parametrizing conduct in lending models.

6.1 Testing the Identification Assumption for Conduct

Our model identification assumes a direct relationship between pass-through and the conduct parameter. Specifically, we assume that pass-through is non-constant as competitive conduct, or the degree of joint maximization among banks competing in the same market, increases. For ease of interpretation, it serves to consider this identification assumption through the lens of a simple pass-through formulation borrowed from Weyl and Fabinger (2013). Assuming symmetric imperfect competition, constant marginal cost, and that conduct is invariant to quantity, pass-through is given by:

\[\rho = \frac{1}{1 + \frac{\theta}{\epsilon_{ms}}} \]

(26)

where \(\theta \) is the conduct parameter (e.g., \(\theta = 1 \) under joint maximization and \(\theta = 0 \) under Bertrand-Nash) and \(\epsilon_{ms} \) is the curvature of demand. Under this simple model, pass-through is complete in Bertrand-Nash. If measured pass-through is not complete, keeping \(\epsilon_{ms} \) constant,
positive (negative) changes in competitive nature (reflected by moves in θ) will move pass-through closer (farther) from one. If pass-through is incomplete, increases in competition will increase pass-through. Instead, if measured pass-through is more than complete, an increase in competition will decrease pass-through.

We have already presented reduced-form evidence in Section 3.3 that pass-through is strongly related with proxies for bank collusion when setting interest rates. Yet, interpretation in our setting is not so straightforward as this reduced-form evidence suggests. Demand curvature may be different across markets, so pass-throughs may differ even if conduct is identical.

With our estimated model in hand, we can now directly test the relationship between conduct and pass-through. We report the results for each region separately in Figure 8. The y-axis plots simulated pass-through and the x-axis the corresponding conduct parameter. We confirm that in all regions, pass-through decreases (non-linearly) with conduct. In addition, the relationship is mostly monotonic, especially in the relevant regions required to test against Bertrand-Nash and Cournot. As we reported above in Figure 7, the relationship between pass-through and conduct is also decreasing and monotonic at the national level.

[Place Figure 8 here.]

6.2 Comparing Simulated and Actual Pass-Throughs

We present a simple exercise to highlight the identification intuition for conduct ν_m. We simulate the model assuming a conduct parameter $\nu_m = 0$, i.e., Bertrand-Nash competition. Next, we separately perform this exercise assuming a conduct parameter $\nu_m = 1$, i.e., joint profit maximization as if there were only one monopoly bank in each market.

Figure 6 plots the results of 1,000 bootstrap simulations, where we sampled borrowers with replacement. We estimate that pass-throughs are centered slightly above one under Bertrand-Nash, despite the significant demand heterogeneity documented above. Contrasting this distribution with the empirical point estimate for pass-through of 0.54 and the upper 95% interval at 0.64, we reject that that conduct is Bertrand-Nash in the actual data. Note that this is a sharp test because our discrete-continuous demand model is flexible enough that we can obtain pass-through estimates both above and below one under Bertrand-Nash, which, as documented by Miravete et al. (2023), many discrete-choice models are not able to accommodate.

In contrast, the simulated distribution of pass-throughs under an assumption of competition under joint profit maximization has an average of 0.57 and almost completely overlaps with the empirical estimate of pass-through. Therefore, we fail to reject that conduct is joint maximization in the actual data at the national level. In Appendix G, we report the simulated pass-through for only actually chosen banks, i.e., the bank the firm chose to borrow from in our data. Although the spread of the distributions is wider in this exercise, we again observe that the Bertrand-Nash distribution does not overlap with the empirical distribution of pass-through, while the distribution of simulated pass-through under joint maximization completely overlaps
with the pass-through observed in the loan data.

[Place Figure 6 here.]

6.3 Aggregate Relationship Between Tax Pass-through and Conduct

These simulation results are consistent with the patterns reported in Section 5.2. However, one might worry that we fail to reject full joint maximization when comparing simulated and actual tax pass-throughs at the aggregate level while we can reject it in two of five regions using regional calibrated conduct. Applying the same grid methodology at the national level helps clarify the results. Figure 7 presents the average pass-throughs by conduct level. The figure shows that using aggregate pass-throughs, we can reject a large range of conduct parameters below 0.5. The figure also shows that we are not able to reject values above 0.5, and that we cannot reject joint-maximization, offering a similar takeaway to the result in Figure 6.49

[Place Figure 7 here.]

It is worth highlighting that our calibrating target is the most conservative estimate from the pair fixed-effects model (aggregate pass-through of 0.53 rather than 0.36). Instead, if we used the lower moment, estimates across the board would be consistent primarily with joint maximization. We do not use those estimates as the main moments for two reasons: 1) we prefer the more conservative results as benchmark, and 2) the thought experiment of estimating within pair pass-throughs in the models matches the empirical benchmark of pair fixed effects closer.

Finally, recall that the reason we can recover conduct with information on tax pass-through is that, given estimates of demand elasticities, the relationship between conduct and pass-through is monotonic. In Figure 7 we see that the relationship between pass-through and conduct is decreasing and monotonic at the national level. In the next section we define the identification assumption for competitive conduct more fully and show that this same monotonic relationship at the regional levels.

6.4 The Importance of the Conduct Assumption for Supply-Side Parameters

In this exercise, we simulate the model assuming a conduct parameter $\nu_m = 0$, i.e., Bertrand-Nash competition. Next, we separately perform this exercise assuming a conduct parameter $\nu_m = 1$, i.e., joint profit maximization as if there were only one monopoly bank in each market. We then compare the model-implied marginal costs and markups under these two scenarios.

49 The point estimates differ relative to Figure 6 as we only use a random subsample of 2,500 borrowers rather than the full set of borrowers from the estimated model. We use the reduced sample due to the computational intensity of calculating Nash equilibrium prices for each borrower and each grid.
This exercise thus also serves to demonstrate the importance of the assumptions on competitive conduct, \(\nu_m \), in the literature. Results are reported in Table 11.

First, we report banks’ borrower-specific marginal costs under the usual assumption of Bertrand-Nash competition (\(\nu_m = 0 \)). Recall that this is the standard assumption in the banking literature and that its advantage is it allows us to invert the first order condition of the seller (as in Equation 6) to back out prices by setting \(\nu_m = 0 \) and using only the own-price elasticities of demand. We find average (median) marginal costs of 8.82 (9.3) percent for each extra dollar lent, which accounts for funding, monitoring, screening, and other economic costs. The corresponding average (median) markup—the gap between prices and marginal costs—is 2.43 (2.30) percentage points or 21.6% (20.04%) of the average interest rate of 11.25%.

Next, we take advantage of cross-elasticity estimates and back-out marginal costs and markups under the assumption of full joint maximization, i.e., \(\nu_m = 1 \). As expected, marginal costs decrease. Specifically, average (median) marginal costs decrease to 4.87 (3.10) percentage points—a 50.57 (55.75) percent decrease relative to the Bertrand-Nash case. In other words, compared to joint maximization, assuming Bertrand-Nash competition leads the model to attribute a greater portion of the price to higher marginal costs than in the data. In contrast, under the assumption of joint maximization, the model attributes some of the markup to anti-competitive behavior, i.e., the first order condition from the banks’ problem loads on both the effect of borrower demand elasticity on quantity demanded and on the impact of internalizing the profit maximization of competitors. So, naturally, the markup the model estimates under the assumption of joint maximization is larger: the model returns an average (median) estimated markup of 6.38 (4.79) percentage points or 56.71 (42.67) percent of the average interest rate. This represents more than a 100 percent increase in the markup relative to the markup estimated under the assumption of Bertrand-Nash competition. This difference may also help explain why markups in the literature tend to be somewhat low.50

In summary, our model delivers reasonable estimates of competitive conduct consistent with both reduced-form evidence and observed pass-through. Using these estimates, we can reject that banks Bertrand-Nash or Cournot/quantity compete at conventional confidence levels. Instead, our estimates are most consistent with some degree of joint maximization. Thus, banks have an incentive to collude, they have the opportunity to do so, through lending associations, multi-market contact and so forth, and regulators have an incentive to allow them to for macro stability reasons. Assuming otherwise leads to significant mismeasurement of marginal costs and markups. Next, we will show that this collusion matters for the effectiveness and efficiency of fiscal policy.

50For instance, Benetton (2021) finds markups of 18% the average interest rate, while Crawford et al. (2018) reports markups of only 5%.

31
7 Tax Incidence, Tax Revenue, and Conduct

Financial taxes and levies are pervasive, including on loans across South America (Argentina, Brazil, Peru, Columbia, Venezuela, Bolivia, Ecuador), Africa (Egypt, South Africa), Europe (Hungary, Spain, Sweden), and Asia (Malaysia). Stamp duties on mortgage loans are also widely used, including in the United Kingdom, India, and Spain, and bank levies are common, especially in Europe. Moreover, while generally considered distortionary (Restrepo, 2019), capital taxes are frequently proposed, including in the Inclusive Prosperity Act proposed by Senator Bernie Sanders in 2019 and COM/2013/71 proposed by the European Commission in 2013, which is still on the table as of 2023. However, the literature has not reached consensus on who bears the burden of financial taxes. Theoretically, the answer is not obvious. It should depend on demand and supply parameters, including supply conduct. Nevertheless, empirical work on such taxes implicitly or explicitly assumes a conduct of zero (i.e., Bertrand-Nash competition).

We fill this gap by studying how bank conduct affects who bears the burden of financial taxes through the lens of our model. To do so we calibrate the incidence, or who bears the burden of the tax. We also calibrate the efficiency cost of the tax, as proxied by its marginal excess burden, or the deadweight loss from raising a marginal dollar of tax revenue. We then examine how the effect depends on the market structure of commercial lending, as summarized by lender conduct.

To calculate the incidence and marginal excess burden of a loan tax, we must calibrate the effect of the tax on borrower surplus, lender surplus and on tax revenue. Specifically, we follow the public finance literature in defining the incidence of a unit tax \(t \) as \(I = \frac{dCS}{dt} \cdot \frac{dPS}{dt} \), where \(CS \) is borrower surplus and \(PS \) is the bank’s surplus (Weyl and Fabinger, 2013; Kroft et al., 2023). Marginal excess burden is the sum of marginal borrower surplus, marginal bank surplus, and marginal tax revenue. We then scale this sum by marginal tax revenue so that it represents the change in welfare as a percentage of the additional tax revenue.

Borrower surplus for firm \(i \) after borrowing from bank \(k \) in market \(m \) at time \(t \) is simply the indirect utility level. Thus, the change in borrower surplus from a change in unit tax is:

\[
\frac{dCS_{ikmt}}{dt} = \frac{d\Pi_{ikmt}}{dt} = \frac{d\Pi_{ikmt}}{dr} \rho_m = -L_{ikmt} \rho_m.
\]

Through Hotelling’s lemma, we obtain that the change in borrower surplus will be proportional to loan size adjusted by pass-through.

Next, for bank profits \(B_{ikmt} = (1 - d_{ikmt})(r_{ikmt} - t)Q_{ikmt}(r) - mc_{ikmt}Q_{ikmt}(r) \), for tax-inclusive
price \(r \), the effect on bank surplus is given by:

\[
\frac{dPS_{ikmt}}{dt} = \frac{dB_{ikmt}}{dt} = (1 - d_{ikm})Q_{ikm}(\rho_m - 1) + ((1 - d_{ikm})(r_{ikm} - t) - mc_{ikm}) \frac{\partial Q_{ikm}}{\partial r_{ikm}} \rho_m
\] (28)

\[
= (1 - d_{ikm})Q_{ikm}(\rho_m - 1) - \frac{\partial Q_{ikm}}{\partial r_{ikm}} \rho_m \frac{Q_{ikm}}{\rho_m} \sum_{j \neq k} \frac{\partial Q_{ikm}}{\partial \rho_{j}} \frac{\partial Q_{ikm}}{\partial \rho_{j}} + \nu_m \sum_{j \neq k} \tilde{\epsilon}_{jk}
\] (29)

\[
= -Q_{ikm}\left((1 - d_{ikm})(1 - \rho_m) + \frac{\rho_m}{1 + \nu_m \sum_{j \neq k} \tilde{\epsilon}_{jk}}\right),
\] (30)

where the second equality follows from the bank’s first-order condition.

Finally, tax revenue is defined as \(R_{ikmt} = tQ_{ikmt} \) and the marginal tax revenue is given by:

\[
\frac{dR_{ikmt}}{dt} \bigg|_{t=0} = Q_{ikm} \left[1 + t \rho_m \tilde{\epsilon}_{kk}\right] = Q_{ikm}.
\] (31)

We calibrate these equations using the counterfactual estimates from our model simulated under conducts \(\nu_m \) equal to zero (Bertrand-Nash), one (joint maximization), and the calibrated conduct values obtained by matching simulated market pass-through to empirical market pass-through. For Bertrand-Nash and joint maximization, we also explore the differences that arise from relying on model-consistent pass-through estimates instead of the empirical ones for parameter \(\rho_m \).

Table 12 presents the results. Model (1) (“Unconditional”) presents “ex-ante” estimates in the sense of not conditioning on the borrowing firm’s choice of bank. Model (2) (“Conditional”) presents “ex-post” estimates that do condition on the borrower’s observed choice of bank. For the ex-post estimates, both bank surplus and tax revenue are scaled by the choice probability, which in our setting is proportional to lender market share. We note that the results for calibrated conduct serve as benchmark, assuming these are the true effects.\(^{51}\)

Panel A presents our empirical benchmark, where we estimate incidence and excess burden using calibrated conduct and the empirical pass-through. This is our best estimate of the actual welfare impact of the SOLCA tax in commercial lending markets. For Panel B, we counterfactually set conduct either equal to pure Bertrand-Nash competition (\(\nu_m = 0 \)) or to full joint maximization (\(\nu_m = 1 \)). We then simulate the tax pass-through using the model conditional on these conduct assumptions. This is our measure of how the expected welfare impact of the tax depends on the assumption about lender collusion.

First, consider the measured incidence in Panel A. We find that prior to choosing a bank, unconditional incidence falls on average (median) on the borrower (equally shared). Once a

\(^{51}\)A reader might be concerned that the introduction of the tax and future changes coming from the regulatory environment might affect the competitive and demand structure of the market. In Internet Appendix Table G1, we explore the robustness of results by focusing on the period before the introduction of the tax, which is not yet affected by the policy. The results are qualitatively and quantitatively similar to those presented in the main text.
bank is chosen, the conditional incidence falls primarily on the banks, with a mean (median) incidence of 0.37 (0.35).

From Panel B it is clear that the conduct assumption greatly affects the estimates relative to the benchmark presented in Panel A that utilizes empirical pass-through estimates for ρ_m. Regardless of whether we focus on the ex-ante or ex-post measure, the burden of taxation is estimated to fall much more on the borrower if one assumes Bertrand Nash competition ($\nu_m \equiv 0$) rather than using calibrated conduct estimated on the data. However, incidence under the assumption of joint-maximization ($\nu_m \equiv 1$) is closer to our benchmark results using calibrated conduct.

This matches our expectation, as we have shown that calibrated conduct is closer to joint-maximization for many markets and that simulated pass-throughs under the assumption of joint-maximization mirrored closely those observed empirically. These results also match the theoretical discussion by Weyl and Fabinger (2013) on the effects of conduct on incidence. But from a policy perspective, noting this distinction is important. The policymaker may weigh borrower surplus differently than bank surplus. Our results imply that the desired distributive effects of taxation will be affected by the prevalent lender conduct in the market.

Next, consider the benchmark marginal excess burden, which we define as the sum of marginal borrower surplus, marginal bank surplus, and marginal tax revenue, scaled by marginal tax revenue. It represents the additional welfare loss per unit of revenue raised by the tax. Our first takeaway is that our estimates of the marginal excess burden of the SOLCA tax, in Panel A, is on average (median) 41% (50%) of marginal tax revenue for the benchmark using calibrated conduct. Thus, the bank loan tax is indeed distortionary in the data, as expected.

But our second key takeaway is that the predictions of excess burden are much higher if we assume pure Bertrand-Nash competition than if we assume full joint maximization. Specifically, in Panel B, we find that the excess burden prediction from the simulation assuming joint-maximization is similar to that estimated under the benchmark model using calibrated conduct. However, assuming Bertrand-Nash conduct greatly overstates the losses, yielding an average (median) 92% (96%) of welfare loss per marginal dollar raised. Thus, naively assuming Bertrand-Nash would overstate excess burden by around 100%.

Thus, we estimate that excess burden is large, indicating that this type of taxation is clearly distortionary. But realized welfare losses are dramatically less than would be expected under a classical framework that assumes no lender collusion. This empirical finding is novel from an academic perspective—our empirical results match the theoretical predictions of Kroft et al. (2023) on the effects of conduct for excess burden.

But they are also of real import to policymakers making hard tax and budget tradeoffs in far from first-best environments where optimal taxation is infeasible.

Comparing our results to other estimates of marginal excess burden per dollar raised, we find that loan taxes are more distortionary than tax on retail products based on US evidence.

52 This is similar to the effect of naively assuming away tax salience in the US (Kroft et al., 2023).
(Kroft et al., 2023), but close to the effect of income taxes on the top one percent in the US (Saez et al., 2012). This general conclusion is in line with previous macro-studies looking at the effect of bank taxes on economic growth (Restrepo, 2019).

While we have shown that the conduct assumption hugely impacts the expected welfare impact of the SOLCA tax, another novel implication is that how distortionary the transaction cost is depends on the competition structure of the commercial loan market. In particular, the counterfactual experiments through the lens of our model suggest that borrowers bear a much higher burden of the tax under Bertrand-Nash competition and the deadweight loss is greater per unit of revenue raised. Intuitively, the higher markups above marginal cost that banks can achieve under joint maximization also give them more freedom to absorb shocks while still operating profitably.

The final takeaway relates to the use of simulated versus empirical pass-throughs. Consider Panel C where we use empirical pass-through ρ_m but counterfactually set conduct ν_m to be either zero or one, i.e., assume that banks eitherpure Bertrand-Nash compete or fully joint maximize, respectively. Reassuringly, if one relies on empirical pass-throughs, estimates both for incidence and excess burden are relatively consistent across the various conduct assumptions. This is important because it implies that, from a policy perspective, it may be feasible to obtain robust predictions without the need for testing conduct beforehand, even if exact magnitudes cannot be pinned down without a model that incorporates flexible conduct. This is not obvious as, keeping pass-through constant, incidence and excess burden generally change with conduct (Weyl and Fabinger, 2013). Here, the key driver bringing incidence and excess burden close across conduct models boils down to the relative importance of substitution patterns (cross elasticities vs. own elasticities). In our empirical setting, cross-elasticities are much smaller than the elastic discrete-continuous demand. Thus, our finding may be generalizable to other markets with similar features.

7.1 Government Subsidies

As we have already studied the effects of government taxes, we can easily obtain estimates for the effects of government subsidies. Such a policy could absorb a fraction of each dollar lent, paid directly to banks, reducing the marginal cost of lending. Indeed, this exercise is simply the mirror of the simulations presented in Table 12. Thus, our estimates suggest that such a policy would be expansionary: deadweight loss would be reduced by an average (median) of 41 (50) cents per dollar spent in subsidy. Moreover, banks will be the main beneficiaries of such a policy, as banks pass along only a fraction of each dollar of subsidy. Thus, subsidizing lending is less effective in non-competitive settings than when banks Bertrand-Nash compete.
7.2 Revenue Maximizing Tax Rates

From Equation 31 for marginal tax revenue, we can estimate the level t at which the marginal revenue enters the “prohibitive” zone, where the marginal tax revenue is negative. For any quantity level Q_{ikm}, this critical value in percentage terms will be equal to:

$$t^* = \frac{-1}{\rho_m \tilde{\epsilon}_{kk}}.$$

Calibrating for mean (median) values of own-demand, total semi-elasticity $\tilde{\epsilon}_{kk}$ of -1.13 (-0.64) and empirical pass-through ρ_m of 0.54, yields a revenue maximizing tax rate of 1.6% (2.89%).\(^{53}\)

The values will be similar for model-consistent estimates in joint maximization with a revenue-maximizing tax rate of 1.76% (3.13%), while in Bertrand-Nash the revenue-maximizing tax rate is 0.83% (1.47%).\(^{54}\)

Thus, in all models, revenue maximizing rates are larger for this segment of borrowers. Moreover, in line with Miravete et al. (2018), market power shifts the Laffer curve rightward, indicating greater possible tax rates the less competitive the market. The intuition for this is that output distortions are lower as a response to the tax rate from the reduced pass-through from market power.

7.3 Tax Revenue

Using total volume of loans from private banks, including not only commercial loans but also mortgages, micro- and consumption loans, and calibrating a tax rate of 0.5%, we measure total tax revenue raised per year in 2015-2017 to be equal to 117 million USD, which is close to the reported tax revenue figure by SRI in 2017 of 96 million USD.

Relying our intensive margin elasticities and pass-through rates from commercial credit, we can estimate the decrease in tax revenue raised if credit was more competitive (Bertrand-Nash). Namely, the tax rate is around 5% of the interest rates in commercial credit,\(^{55}\) the intensive margin elasticity is equal to -4.5, and the Bertrand-Nash pass-through is equal to 1.06 instead of 0.54. The difference in pass-through to final prices (0.52) would imply a decrease in total credit of around 10%, given that interest rates would further increase by around 2.5%. Thus, tax revenue if the commercial lending market was Bertrand-Nash competitive would be around 10% lower.

\(^{53}\)Semi-elasticities are obtained by dividing elasticities by the interest rate in percentage terms.

\(^{54}\)We use pass-through $\rho_m = 0.5$ for joint-maximization and $\rho_m = 1.06$ for Bertrand-Nash.

\(^{55}\)They are a smaller share in other types of credit.
8 Conclusion

In this paper, we investigate the impact of bank competition on the welfare consequences of financial taxes using the introduction of a surprise loan tax in Ecuador and a structural model of commercial lending. The model takes into account a mix of continuous and discrete credit demand and looks at the different ways that banks compete for borrowers, from setting prices for maximum joint profits to competing under the Bertrand-Nash model. This model improves upon previous studies by differentiating between competition and differences in marginal lending costs, allowing the identification of a parameter describing bank conduct. We estimate the model and its results using data from all commercial credit in Ecuador. We reject that banks Bertrand-Nash or Cournot compete, but we fail to reject the joint profit maximization model.

These results already have several important implications for policymakers and the literature. First, we show that lender collusion significantly affects the welfare outcomes of financial taxation. When accounting for collusion, the estimated deadweight loss from the SOLCA tax was significantly less than what would be calculated under the assumption of perfect competition. This implies that as a second-best option, financial taxes are not as distorting as commonly supposed when markets are not perfectly competitive. The findings have broader applicability to various types of capital taxes and financial levies common in many countries. They could also inform the design of other policy tools, like carbon taxes or interest rate pass-through, where variation in sectoral competition could affect the welfare impact of the policy. Conversely, we find that subsidies are less effective in non-competitive settings.

Second, we find that it is not without loss of generality that existing models assume Bertrand-Nash competition among lenders. When we relax this assumption and take it to the data we find that a substantial amount of bank pricing power is better explained by collusive behavior from joint profit maximization. This is important because models that assume banks compete when they do not will overestimate marginal costs and underestimate markups.

Overall, our findings suggest that it is important to account for potential lender collusion when studying the impact on borrowers of competition in lending markets. And academics and policymakers should consider how welfare depends on market structure when designing tax-and-subsidy strategies.

References

Cuesta, José Ignacio and Alberto Sepúlveda. “Price regulation in credit markets: A trade-off between consumer protection and credit access,” Available at SSRN 3282910, 2021.

9 Tables and Figures

\[\rho_{iknt} \equiv \frac{\delta r_{iknt}}{\delta m_{iknt}} \]

\[= \left[\epsilon_{kk'} + \sum_{j \neq k} \epsilon_{kj} \right] / \left[\left(\epsilon_{kk'} + \sum_{j \neq k} \epsilon_{kj} \right) + \left(r_{iknt} - m_{iknt} / (1 - d_{iknt}) \right) \left(\frac{\partial \epsilon_{kk}}{\partial r_{iknt}} + \sum_{j \neq k} \frac{\partial \epsilon_{kj}}{\partial r_{iknt}} \right) \right] \]

\[m_{iknt} = r_{iknt}(1 - d_{iknt}) + \frac{1 - d_{iknt}}{r_{iknt}} + \sum_{j \neq k} \frac{\epsilon_{kj}}{r_{i,j,m}} \]

FIGURE 1: MODEL OF COMMERCIAL CREDIT

The figure describes the main identifying equations for the model and how each component is identified.
FIGURE 2: DYNAMIC ANALYSIS OF THE INTRODUCTION OF THE SOLCA TAX ON PRE-TAX NOMINAL INTEREST RATES OF NEW COMMERCIAL DEBT LENT BY PRIVATE BANKS

The figure reports the period-by-period difference in average pre-tax nominal interest rates on new commercial loans from private banks around treatment assignment relative to event-time period $t = -2$ (normalized to zero), using firm and bank fixed effects (Panel (a)) or firm \times bank fixed effects (Panel (b)). Data are loan-level. The figure tests for both treatment effects and for evidence of significant differences in outcomes before treatment assignment (pre-trends). Standard error bars are shown at the 95% confidence level and are clustered at the bank-quarter level.
FIGURE 3: DYNAMIC ANALYSIS OF THE INTRODUCTION OF THE SOLCA TAX PRE-TAX ON NOMINAL INTEREST RATES OF NEW COMMERCIAL DEBT LENT BY STATE-OWNED BANKS

The figure reports the period-by-period difference in average pre-tax nominal interest rates on new commercial loans from public banks around treatment assignment relative to event-time period \(t = -2 \) (normalized to zero), using firm and bank fixed effects (Panel (a)) or firm \(\times \) bank fixed effects (Panel (b)). Data are loan-level. The figure tests for both treatment effects and for evidence of significant differences in outcomes before treatment assignment (pre-trends). Standard error bars are shown at the 95% confidence level and are clustered at the bank-quarter level.

FIGURE 4: DYNAMIC ANALYSIS OF THE INTRODUCTION OF THE SOLCA TAX ON MATURITY AND AMOUNT OF NEW COMMERCIAL DEBT LENT BY PRIVATE BANKS

The figure reports the period-by-period difference in average term-to-maturity (Panel (a)) or the natural logarithm of the amount borrowed (Panel (b)) on new commercial loans from private banks around treatment assignment relative to event-time period \(t = -2 \) (normalized to zero), using firm \(\times \) bank fixed effects. Data are loan-level. Standard error bars are shown at the 95% confidence level and are clustered at the bank-quarter level.
FIGURE 5: REGIONAL CONDUCT PARAMETER BY MATCH ORDER

The figure reports the competitive conduct parameter estimates by lending region against the ordered best-ranked matches between empirical and model-estimated tax pass-through. The best fit is match order one. The model is separately estimated by region on a random sample of 2,500 firms using a simulated method of moments model. The bootstrapped standard errors are estimated using 1,000 bootstrap samples. The dotted line at conduct one corresponds to full joint maximization and the dashed line at conduct zero corresponds to pure Bertrand-Nash competition. The intermediate conduct represented by the dot-dash line represents the competitive conduct value that corresponds to Cournot competition in each region.
FIGURE 6: DISTRIBUTION OF SIMULATED PASS-THROUGHS BY CONDUCT

The figure reports the distribution of average nation-wide, bootstrapped, simulated Nash-equilibrium pass-throughs of the introduction of a loan tax of 0.5% by mode of conduct (Bertrand-Nash in blue and Joint Maximization in Orange). Bootstrap estimates come from 1,000 bootstrapped samples of borrower-level estimates of pass-through under each model. The dashed line shows the estimated empirical pass-throughs regressions (using actual loan data) presented in the reduced-form section of the paper, and the shaded area shows the 95% confidence intervals.

FIGURE 7: AVERAGE NATION-WIDE SIMULATED PASS-THROUGHS BY CONDUCT GRID

The figure reports the average nation-wide simulated Nash-equilibrium pass-throughs of the introduction of a tax of 0.5% over a grid of competitive conducts between 0 and 1. We estimate on a random sample of 2,500 borrowers from each region. Confidence intervals are clustered at the region-conduct grid level. The dashed line shows the estimated empirical pass-throughs regressions (using data with actual loans) presented in the reduced-form section of the paper, and the shaded area shows the 95% confidence interval.
FIGURE 8: RELATIONSHIP BETWEEN SIMULATED PASS-THROUGH AND COMPETITIVE CONDUCT

The figure reports simulated pass-throughs (y-axis) estimated in 0.1 buckets over the support of the conduct parameter (x-axis). The model is separately estimated by region on a random sample of 2,500 firms. Bootstrapped standard errors are estimated using 1,000 bootstrap samples.

TABLE 1: AGGREGATE-LEVEL CREDIT CHARACTERISTICS

The table describes the private-bank commercial loan market in aggregate. Data are at the bank-province-year level for 2010 to 2017. Data are from both private and state-owned banks. Bank-province-years for where no new loans were granted are excluded. Total volume is the sum of the dollar value of all loans extended. # Clients is the sum of unique clients. # Loans is the count of loans extended.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Volume</td>
<td>59,100,000</td>
<td>1,420,334</td>
</tr>
<tr>
<td># Clients</td>
<td>83.82</td>
<td>11.00</td>
</tr>
<tr>
<td># Loans</td>
<td>517.78</td>
<td>24.00</td>
</tr>
<tr>
<td>Observations</td>
<td>1,771</td>
<td>1,771</td>
</tr>
</tbody>
</table>
TABLE 2: CHARACTERISTICS BY MARKET CONCENTRATION (HHI)

The table describes the commercial loan market by market concentration. Data are at the bank-province-year level for 2010 to 2017. State-owned banks and bank-province-years for private banks where no new loans were granted are excluded. Data are cut above and below median HHI value (2,243.18), measured across all years in the data. Panel A presents branch information. # Branches is the number of open branches in the province. # Other Private Banks is the number of other private banks active in the province. # Other Private Branches is the total number competing branches active in the province. Panel B presents credit information. Total Volume is the sum of the dollar value of all loans extended. # Clients is the sum of unique clients. # Loans is the count of loans extended. Av. Loan is the average loan size. Av. Maturity is average annualized term-to-maturity at issuance. Av. Interest Rate is the nominal, annualized interest rate at issuance, in percent. # Loans per Client is the average number of loans extended per firm from a given bank.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Below Median HHI</th>
<th>Above Median HHI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Panel A: Branch Information</td>
<td></td>
</tr>
<tr>
<td># Branches</td>
<td>5.16</td>
<td>2.69</td>
</tr>
<tr>
<td># Other Private Banks</td>
<td>15.93</td>
<td>10.45</td>
</tr>
<tr>
<td># Other Private Branches</td>
<td>104.13</td>
<td>43.32</td>
</tr>
<tr>
<td>Observations</td>
<td>891</td>
<td>880</td>
</tr>
<tr>
<td></td>
<td>Panel B: Credit Information</td>
<td></td>
</tr>
<tr>
<td>Total Volume (M USD)</td>
<td>105</td>
<td>0.013</td>
</tr>
<tr>
<td># Clients</td>
<td>141.53</td>
<td>25.37</td>
</tr>
<tr>
<td># Loans</td>
<td>937.30</td>
<td>93.01</td>
</tr>
<tr>
<td>Av. Loan (K USD)</td>
<td>182.43</td>
<td>99.33</td>
</tr>
<tr>
<td>Av. Maturity</td>
<td>1.09</td>
<td>0.92</td>
</tr>
<tr>
<td>Av. Interest Rate (%)</td>
<td>9.99</td>
<td>11.01</td>
</tr>
<tr>
<td># Loans per Client</td>
<td>114.79</td>
<td>12.97</td>
</tr>
<tr>
<td>Observations</td>
<td>891</td>
<td>880</td>
</tr>
</tbody>
</table>
The table describes the commercial loan dataset. **Firm-Level Data** are at the firm-year level for 2010 to 2017. **Firm Age** is years from incorporation date. **Total Assets** and **Total Sales** are reported in millions of 2010 USD. **Total Wages** are all wages reported to the company regulator for both contract and full-time employees and is reported in millions of 2010 USD. **Total Debt** is the sum of short- and long-term debt and is reported in millions of 2010 USD. **Leverage** is total debt over beginning-of-period total assets. **Number Bank Relationships** are the number of banks the firm has borrowed from in a calendar year. **Age Bank Relationship** is years from the first loan with a bank. **Loan-Level Data** are at the loan-year level for 2010 to 2017, where only newly-granted commercial loans are included. **Interest Rate** is the nominal, annualized interest rate at issuance, in percent. **Loan Amount** is the size of the loan in millions of 2010 USD at issuance. **Annual Loan Maturity** is years-to-maturity at issuance. \(1(\text{Loan with rating} < B) \) is an indicator that takes the value one if the bank has applied a risk weight on the loan lower than B, i.e., the loan expects non-zero write-down on the loan. \(1(\text{Default Observed}) \) is an indicator that takes the value one if the loan defaults at any point after issuance. indicates whether the banks report default on the loan at any future point in time. Continuous variables are winsorized at the 1% and 99% levels.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Median</th>
<th>SD</th>
<th>Min.</th>
<th>Max.</th>
<th>Obs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Firm-Level Data: Active Borrowers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Age</td>
<td>12.25</td>
<td>9.00</td>
<td>11.14</td>
<td>0.00</td>
<td>96.00</td>
<td>97,796</td>
</tr>
<tr>
<td>Total Assets</td>
<td>2.05</td>
<td>0.40</td>
<td>4.22</td>
<td>0.00</td>
<td>20.66</td>
<td>97,796</td>
</tr>
<tr>
<td>Total Sales</td>
<td>2.57</td>
<td>0.62</td>
<td>4.86</td>
<td>0.00</td>
<td>23.14</td>
<td>97,796</td>
</tr>
<tr>
<td>Total Wages</td>
<td>0.36</td>
<td>0.10</td>
<td>0.63</td>
<td>0.00</td>
<td>2.98</td>
<td>97,796</td>
</tr>
<tr>
<td>Total Debt</td>
<td>1.31</td>
<td>0.28</td>
<td>2.61</td>
<td>0.00</td>
<td>12.65</td>
<td>97,796</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.66</td>
<td>0.71</td>
<td>0.28</td>
<td>0.00</td>
<td>1.19</td>
<td>97,796</td>
</tr>
<tr>
<td>Number of Bank Relationships</td>
<td>1.38</td>
<td>1.00</td>
<td>0.79</td>
<td>1.00</td>
<td>7.00</td>
<td>97,796</td>
</tr>
<tr>
<td>Number Loans</td>
<td>8.88</td>
<td>2.00</td>
<td>100.66</td>
<td>1.00</td>
<td>9,195.00</td>
<td>97,796</td>
</tr>
<tr>
<td>Panel B: Firm-Level Data: Non Active Borrowers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Age</td>
<td>9.92</td>
<td>7.00</td>
<td>10.09</td>
<td>0.00</td>
<td>93.00</td>
<td>359,827</td>
</tr>
<tr>
<td>Total Assets</td>
<td>0.46</td>
<td>0.05</td>
<td>1.73</td>
<td>0.00</td>
<td>20.66</td>
<td>359,827</td>
</tr>
<tr>
<td>Total Sales</td>
<td>0.43</td>
<td>0.03</td>
<td>1.70</td>
<td>0.00</td>
<td>23.14</td>
<td>359,827</td>
</tr>
<tr>
<td>Total Wages</td>
<td>0.07</td>
<td>0.01</td>
<td>0.25</td>
<td>0.00</td>
<td>2.98</td>
<td>359,827</td>
</tr>
<tr>
<td>Total Debt</td>
<td>0.26</td>
<td>0.02</td>
<td>1.01</td>
<td>0.00</td>
<td>12.65</td>
<td>359,827</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.54</td>
<td>0.58</td>
<td>0.40</td>
<td>0.00</td>
<td>1.19</td>
<td>359,827</td>
</tr>
<tr>
<td>Panel C: Loan-Level Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age Bank Relationship</td>
<td>2.31</td>
<td>2.00</td>
<td>2.41</td>
<td>0.00</td>
<td>16.00</td>
<td>885,229</td>
</tr>
<tr>
<td>Loan Interest Rate</td>
<td>9.20</td>
<td>8.95</td>
<td>3.48</td>
<td>0.00</td>
<td>25.50</td>
<td>885,229</td>
</tr>
<tr>
<td>Loan Amount</td>
<td>0.10</td>
<td>0.01</td>
<td>1.73</td>
<td>0.00</td>
<td>466.00</td>
<td>885,229</td>
</tr>
<tr>
<td>Annual Loan Maturity</td>
<td>0.51</td>
<td>0.25</td>
<td>0.80</td>
<td>0.00</td>
<td>27.39</td>
<td>885,229</td>
</tr>
<tr>
<td>(1(\text{Loan with Rating} < B))</td>
<td>0.02</td>
<td>0.00</td>
<td>0.14</td>
<td>0.00</td>
<td>1.00</td>
<td>885,229</td>
</tr>
<tr>
<td>(1(\text{Default Observed}))</td>
<td>0.00</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>1.00</td>
<td>885,229</td>
</tr>
</tbody>
</table>

48
TABLE 4: AGGREGATE PASS-THROUGH ESTIMATES

The table reports aggregate pass-through estimates to the tax-inclusive interest rates of commercial loans around the introduction of the 2014 SOLCA tax in Ecuador. Data are at the loan-level for 2010 to 2017, excluding October 2014. The main independent variable is the tax rate, measured as 0.5 adjusted proportionally by term-to-maturities if maturity is less than 1 year. The dependent variable is the tax-inclusive interest rate, which is the sum of the nominal, annualized interest rate plus the tax rate. Both are in percentage points. Regressions control for twenty buckets of term-to-maturity, and twenty buckets of loan amount. Models (2) and (4) control for predicted default probability. Models (1) and (2) control for bank and firm fixed effects, whereas (3) and (4) control for bank × firm (pair) fixed effects. Robust standard errors clustered at the bank-quarter level are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Testing is conducted against the full pass-through null hypothesis (ρ = 1).

<table>
<thead>
<tr>
<th>Outcome: Tax-inclusive interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>Pass-through (ρ)</td>
</tr>
<tr>
<td>Pr(Default) Control</td>
</tr>
<tr>
<td>Maturity & Amount Controls</td>
</tr>
<tr>
<td>Bank Fixed Effect</td>
</tr>
<tr>
<td>Firm Fixed Effect</td>
</tr>
<tr>
<td>Pair Fixed Effect</td>
</tr>
<tr>
<td>Observations</td>
</tr>
<tr>
<td>R-squared</td>
</tr>
</tbody>
</table>
TABLE 5: HETEROGENEITY IN DIRECT TAX PASS-THROUGH

The table reports heterogeneity in aggregate pass-through estimates to the tax-inclusive interest rates of commercial loans around the introduction of the 2014 SOLCA tax in Ecuador. Data are at the loan-level for 2010 to 2017, excluding October 2014. The main independent variable is the tax rate, measured as 0.5 adjusted proportionally by term-to-maturities if maturity is less than 1 year. The dependent variable is the tax-inclusive interest rate, which is the sum of the nominal, annualized interest rate plus the tax rate. Both are in percentage points. Regressions control for twenty buckets of term-to-maturity, and twenty buckets of loan amount, predicted default probability, and bank × firm (pair) fixed effects. Interacted variables are: # Lenders is the firm’s total number of lenders prior to October 2014; # Av. City Active Lenders is the average number of active lenders per year prior to October 2014; # Potential Lenders is the maximum number of active lenders as of October 2014; HHI Province is the Herfindahl-Hirschman Index per year per province prior to October 2014; HHI City is the Herfindahl-Hirschman Index per year per city prior to October 2014; Multimarket Contact is the average number, across all bank pairs active in the province, of other provinces in which banks jointly operate in. Market Share Nonmembers is the market share (defined on loan share) of banks in the given market that are not members of the Asociación de Bancos del Ecuador. In all models, interacted variables are standardized such that the main effect is the pass-through for the average borrower. Robust standard errors clustered at the bank-quarter level are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. For the main effect, testing is conducted against the full pass-through null hypothesis (ρ = 1). For the interaction term, testing is against the no-effect null hypothesis.

<table>
<thead>
<tr>
<th>Outcome: Tax-inclusive interest rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (2) (3) (4) (5) (6) (7)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pass-through (ρ)</th>
<th>0.565**</th>
<th>0.676</th>
<th>0.441***</th>
<th>0.550**</th>
<th>0.603**</th>
<th>0.529**</th>
<th>0.517***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.212)</td>
<td>(0.209)</td>
<td>(0.207)</td>
<td>(0.195)</td>
<td>(0.200)</td>
<td>(0.203)</td>
<td>(0.187)</td>
</tr>
</tbody>
</table>

Interacted with
<table>
<thead>
<tr>
<th># Lenders</th>
<th># Av. City Active Lenders</th>
<th># Potential Lenders</th>
<th>HHI Province</th>
<th>HHI City</th>
<th>Multimarket Contact</th>
<th>Mkt. Share Nonmember</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.136</td>
<td>0.583***</td>
<td>0.459***</td>
<td>-0.565***</td>
<td>-0.413***</td>
<td>-0.226**</td>
<td>0.186*</td>
</tr>
<tr>
<td>(0.125)</td>
<td>(0.177)</td>
<td>(0.117)</td>
<td>(0.113)</td>
<td>(0.086)</td>
<td>(0.092)</td>
<td>(0.104)</td>
</tr>
</tbody>
</table>

Pair Fixed Effect | Yes |
Amount Bucket | Yes |
Maturity Bucket | Yes |
Default Risk Control | Yes |
Observations | 347,471 | 347,471 | 347,471 | 347,471 | 347,463 | 347,471 | 345,700 |
R-squared | 0.777 | 0.777 | 0.777 | 0.777 | 0.777 | 0.777 | 0.772 |

50
TABLE 6: PASS-THROUGH PER REGION

The table reports pass-through estimates by lending region to the interest rates of commercial loans around the introduction of the 2014 SOLCA tax in Ecuador. Data are at the loan-level for 2010 to 2017, excluding October 2014. The main independent variable is the tax rate, measured as 0.5 adjusted proportionally by term-to-maturities if maturity is less than 1 year. The dependent variable is the tax-inclusive interest rate, which is the sum of the nominal, annualized interest rate plus the tax rate. Both are in percentage points. Regressions control for twenty buckets of term-to-maturity, and twenty buckets of loan amount, predicted default probability, and bank × firm (pair) fixed effects. The model is separately estimated by region. Robust standard errors are clustered at the bank-quarter level.

<table>
<thead>
<tr>
<th>Region</th>
<th>Pass-through (ρ)</th>
<th>Standard Error</th>
<th>Observations</th>
<th>P-value (Pass-through = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azuay</td>
<td>0.508</td>
<td>0.276</td>
<td>39,610</td>
<td>0.072</td>
</tr>
<tr>
<td>Costa</td>
<td>0.438</td>
<td>0.344</td>
<td>15,139</td>
<td>0.104</td>
</tr>
<tr>
<td>Guayas</td>
<td>0.727</td>
<td>0.160</td>
<td>176,907</td>
<td>0.090</td>
</tr>
<tr>
<td>Pichincha</td>
<td>0.346</td>
<td>0.301</td>
<td>95,380</td>
<td>0.031</td>
</tr>
<tr>
<td>Sierra</td>
<td>0.537</td>
<td>0.401</td>
<td>20,435</td>
<td>0.251</td>
</tr>
</tbody>
</table>

TABLE 7: DEMAND PARAMETERS

The table presents the mean and standard deviation of estimated parameters across markets (provinces). The coefficient for Price comes from an instrumental variable approach that corrects for price endogeneity and measurement error in predicted prices for non-observed offers. The standard deviation is calculated as the standard error of the parameter values obtained by estimating the model on 1,000 bootstrap samples.

<table>
<thead>
<tr>
<th>Variable</th>
<th>(1) Mean</th>
<th>(2) Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>-0.24</td>
<td>0.08</td>
</tr>
<tr>
<td>Sigma (unobserved heterogeneity)</td>
<td>0.81</td>
<td>0.05</td>
</tr>
<tr>
<td>Scaling factor (to match proportion borrowers)</td>
<td>1.06</td>
<td>0.39</td>
</tr>
<tr>
<td>Log(Branches)</td>
<td>2.26</td>
<td>1.02</td>
</tr>
<tr>
<td>Age Firm</td>
<td>-0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Age Relationship</td>
<td>0.39</td>
<td>0.04</td>
</tr>
<tr>
<td>Assets</td>
<td>0.24</td>
<td>0.11</td>
</tr>
<tr>
<td>Debt</td>
<td>-0.01</td>
<td>0.05</td>
</tr>
<tr>
<td>Expenditures</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Revenues</td>
<td>-0.02</td>
<td>0.04</td>
</tr>
<tr>
<td>Wages</td>
<td>0.01</td>
<td>0.03</td>
</tr>
</tbody>
</table>
TABLE 8: LOAN DEMAND, OWN-PRODUCT AND CROSS-PRODUCT DEMAND ELASTICITIES

The table reports the loan-level estimated elasticities for realized and non-realized loans. Continuous elasticity is the intensive margin elasticity with respect to interest rates. Discrete elasticity is the discrete-choice elasticity with respect to interest rates. Total is the sum of continuous and discrete. Cross elasticity is the discrete bank substitution elasticity with respect to interest rates.

<table>
<thead>
<tr>
<th>Elasticities</th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous</td>
<td>-4.63</td>
<td>-4.50</td>
<td>2.68</td>
<td>-9.58</td>
<td>-0.86</td>
<td>628,450</td>
</tr>
<tr>
<td>Discrete</td>
<td>-6.01</td>
<td>-0.55</td>
<td>11.33</td>
<td>-42.80</td>
<td>0.00</td>
<td>628,450</td>
</tr>
<tr>
<td>Total</td>
<td>-10.71</td>
<td>-7.31</td>
<td>10.21</td>
<td>-44.68</td>
<td>-2.81</td>
<td>628,450</td>
</tr>
<tr>
<td>Cross</td>
<td>0.17</td>
<td>0.01</td>
<td>0.36</td>
<td>0.00</td>
<td>1.38</td>
<td>627,704</td>
</tr>
</tbody>
</table>

TABLE 9: DESCRIPTION OF MODEL FIT

The table presents measures of model fit regarding market shares, loan use, prices, and default rates. Differences in observations are because loan use, prices, and default are only measured for actual, realized loans. Market shares and loan use come from the structural demand model, discussed in section 4. Estimation methodology for default is available in Appendix C and for prices in Appendix D.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Market Share</td>
<td>0.06</td>
<td>0.25</td>
<td>681,722</td>
</tr>
<tr>
<td>Model Market Share</td>
<td>0.06</td>
<td>0.15</td>
<td>681,722</td>
</tr>
<tr>
<td>Observed Loan Use</td>
<td>9.43</td>
<td>2.33</td>
<td>39,560</td>
</tr>
<tr>
<td>Predicted Loan Use</td>
<td>9.42</td>
<td>1.49</td>
<td>39,586</td>
</tr>
<tr>
<td>Observed Prices</td>
<td>11.27</td>
<td>4.42</td>
<td>39,586</td>
</tr>
<tr>
<td>Predicted Prices</td>
<td>11.21</td>
<td>3.54</td>
<td>39,586</td>
</tr>
<tr>
<td>Observed Default</td>
<td>0.02</td>
<td>0.14</td>
<td>39,586</td>
</tr>
<tr>
<td>Predicted Default</td>
<td>0.02</td>
<td>0.04</td>
<td>39,586</td>
</tr>
</tbody>
</table>
TABLE 10: CONDUCT PER REGION

The table reports competitive conduct parameter estimates by lending region. The model is separately estimated on a random sample of 2,500 firms from each region using a simulated method of moments model that matches empirical to model-estimated tax pass-through. The bootstrapped standard error is based on 1,000 bootstrap samples.

<table>
<thead>
<tr>
<th>Region</th>
<th>Mean</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Azuay</td>
<td>0.70</td>
<td>0.12</td>
</tr>
<tr>
<td>Costa</td>
<td>0.91</td>
<td>0.04</td>
</tr>
<tr>
<td>Guayas</td>
<td>0.33</td>
<td>0.07</td>
</tr>
<tr>
<td>Pichincha</td>
<td>0.56</td>
<td>0.07</td>
</tr>
<tr>
<td>Sierra & Oriente</td>
<td>0.67</td>
<td>0.06</td>
</tr>
</tbody>
</table>

TABLE 11: MOVE TO COMPETITION

This table presents the estimated borrower-bank-loan specific (Panel A) marginal costs under two modes of counterfactual competitive conduct: (1) banks are forced to Bertrand-Nash compete, i.e., banks cannot collude ($\nu_m \equiv 0$); and (2) banks joint maximize, i.e., banks are allowed to collude ($\nu_m \equiv 1$). Panel B presents predicted prices. Panel C shows the markups under Bertrand and Joint Maximization conducts.

<table>
<thead>
<tr>
<th>Panel A: Marginal Costs</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marginal Cost - Bertrand-Nash ($\nu_m \equiv 0$)</td>
<td>8.82</td>
<td>9.30</td>
</tr>
<tr>
<td>Marginal Cost - Joint-Maximization ($\nu_m \equiv 1$)</td>
<td>4.87</td>
<td>3.10</td>
</tr>
<tr>
<td>% Change in Marginal Cost</td>
<td>-50.57</td>
<td>-55.75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Prices</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prices - Predicted</td>
<td>11.25</td>
<td>11.56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Markups</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markup - Bertrand-Nash ($\nu_m \equiv 0$)</td>
<td>2.43</td>
<td>2.30</td>
</tr>
<tr>
<td>Markup - Joint-Maximization ($\nu_m \equiv 1$)</td>
<td>6.38</td>
<td>4.79</td>
</tr>
</tbody>
</table>
TABLE 12: TAX INCIDENCE

This table presents simulated estimates of tax incidence and marginal excess burden through the lens of the model by estimating separately by lender competitive conduct—either the data-calibrated conduct or counterfactual Bertrand-Nash or joint maximization conduct (re-simulating the model imposing a conduct of zero or one, respectively). Presented measures are calculated according to incidence Equations 27, 28, and 31. For Bertrand-Nash and joint maximization, we explore results using model-consistent and empirical pass-through estimates. Model (1) presents ex-ante estimates, before the decision of which bank to choose from. Model (2) presents ex-post estimates, conditional on the observed choice of bank. In practice, the difference between Models (1) and (2) is that Model (1) adjusts bank surplus and tax revenue by the choice probability (market share s_{ikm}). Marginal excess burden is defined as the sum of marginal borrower surplus, marginal bank surplus, and marginal tax revenue.

<table>
<thead>
<tr>
<th>Panel A: The empirical benchmark</th>
<th>Mean</th>
<th>Median</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrated Conduct</td>
<td>Empirical Pass-through</td>
<td>(1)</td>
<td>(2)</td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>2.76</td>
<td>0.95</td>
<td>0.37</td>
<td>0.35</td>
</tr>
<tr>
<td>Excess Burden over Marginal Tax Revenue</td>
<td>-0.41</td>
<td>-0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel B: Counterfactual Simulations</th>
<th>Mean</th>
<th>Median</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint-Maximization</td>
<td>Simulated Pass-through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>3.51</td>
<td>1.05</td>
<td>0.48</td>
<td>0.41</td>
</tr>
<tr>
<td>Excess Burden over Marginal Tax Revenue</td>
<td>-0.36</td>
<td>-0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertrand-Nash</td>
<td>Simulated Pass-through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>6.34</td>
<td>1.93</td>
<td>0.88</td>
<td>0.97</td>
</tr>
<tr>
<td>Excess Burden over Marginal Tax Revenue</td>
<td>-0.92</td>
<td>-0.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C: Counterfactual Conduct, Empirical Pass-through</th>
<th>Mean</th>
<th>Median</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joint-Maximization</td>
<td>Empirical Pass-through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>3.64</td>
<td>1.02</td>
<td>0.49</td>
<td>0.35</td>
</tr>
<tr>
<td>Excess Burden over Marginal Tax Revenue</td>
<td>-0.35</td>
<td>-0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bertrand-Nash</td>
<td>Empirical Pass-through</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidence</td>
<td>3.55</td>
<td>1.14</td>
<td>0.52</td>
<td>0.51</td>
</tr>
<tr>
<td>Excess Burden over Marginal Tax Revenue</td>
<td>-0.51</td>
<td>-0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>